Новое поколение датчиков производства компании Freescale Semiconductor

для сенсорного управления

Бурное развитие электроники привело к появлению принципиально новых полупроводниковых датчиков на основе бесконтактных технологий. Среди них емкостные датчики являются наиболее распространенными и перспективными. Использование в устройствах промышленной, медицинской и бытовой электроники бесконтактных клавиатур, построенных на базе емкостных датчиков, позволяет существенно расширить области применения данных устройств, увеличить надежность и снизить конечную стоимость изделий.

Алексей АРХИПОВ Михаил АСТАШЕВ

Монтания Freescale Semiconductor — один из лидеров в области разработки и производства электронных компонентов — представлена в сегменте емкостных датчиков приближения (proximity sensors) семейством MPR08x (табл. 1).

Емкостные датчики приближения, производимые компанией Freescale, содержат низкочастотный генератор синусоидального напряжения, нагруженный на RC-контур, к которому подключен чувствительный контакт, выпрямитель, НЧ-фильтр и индикатор постоянного выходного напряжения (рис. 1). RC-контур образуется выходным сопротивлением генератора и паразитной емкостью, величина которой очень мала, а реактивное сопротивление достаточно высоко. Вследствие этого в обычном режиме, когда вблизи контакта нет посторонних объектов и объект не приближается к контакту, напряжение на паразитной выходной емкости (и на подключенном к той же точке контакте) почти равно напряжению холостого хода генератора (напряжению в точке (а)).

Когда же какой-либо объект, например палец человека, приближается к контакту, он образует вместе с контактом обкладки конденсатор значительно большей емкости, реактивное сопротивление в точке (б) умень-

Таблица 1. Характеристики и доступность микросхем MPR083 и MPR084

Название микросхемы
Характеристики
Тип корпуса
Доступность образцов
Начало серийного производства

MPR083
8-позиционный поворотный переключатель 1,8-3,6 В -40...+85 °C
QFN-16TSSOP-16
Сенябрь 2007
Октябрь 2007

MPR084
8 независимых сенсорных клавиш 1,8-3,6 В -3,6 В -3,6

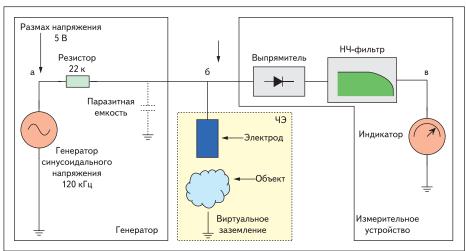


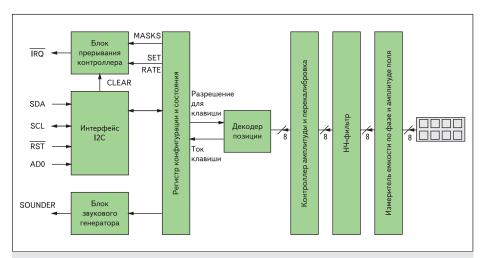
Рис. 1. Принцип работы емкостного датчика приближения

шается и напряжение в этой точке снижается, что приводит к снижению напряжения и на выходе фильтра в точке (в).

Наиболее перспективным использованием датчиков приближения на основе детектирования электрического поля является построение сенсорной клавиатуры. Именно для таких целей и предназначено семейство датчиков приближения MPR08x, состоящее из двух типов датчиков.

На рис. 2 представлена блок-схема простейшего датчика MPR084, число сенсорных клавиш которого равно числу сенсорных выводов микросхемы.

Измеритель емкости в данной микросхеме содержит устройство сканирования, подающее напряжение генератора поочередно на одну из контактных площадок, и после цикла сканирования по изменению напряжения на выходе генератора ниже порогового уровня



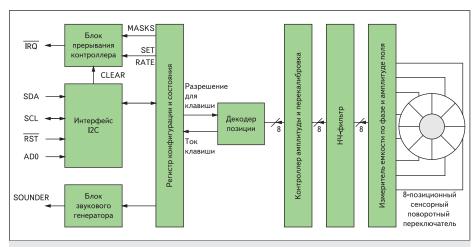

Рис. 2. Датчик для клавиатуры на 8 клавиш MPR084

Рис. 3. 8-позиционный сенсорный поворотный переключатель на базе микросхемы MPR083

определяется, к какой из клавиш приближается палец пользователя. Сигналы с компаратора поступают на декодер позиции, который записывает состояние системы в регистр конфигурации состояния. Далее данные в режиме прерывания передаются на ведущий контроллер через последовательный интерфейс Г²С. Приближение пальца к контакту отмечается характерным щелчком, создаваемым встроенным в датчик звуковым пьезогенератором, имитирующим щелчок механического выключателя.

В сенсорных панелях управления для сотовых телефонов, смартфонов, КПК и тому подобных портативных устройств применяется также сенсорное устройство, подобное поворотному переключателю (рис. 3). Для этого сенсорные площадки (контакты) можно расположить по кругу, и движение пальца по этому кругу будет имитировать вращение ручки переключателя. В портативном устройстве переключатель используется для выбора программы. При движении пальца по кругу подсвечиваются различные

Рис. 4. Блок-схема 8-позиционного сенсорного поворотного переключателя на базе микросхемы MPR083

Таблица 2. Основные характеристики и преимущества MPR083 и MPR084

Основные характеристики	Преимущества		
8 выводов	Возможность одновременного обслуживания восьми сенсорных клавиш или 8-позиционного поворотного переключателя		
Напряжение питания — 1,8—3,6 В	Оптимально для портативной электроники и работы с сенсорными клавиатурами		
Ток потребления в режиме сканирования— 150 мкА в режиме ожидания— 1 мкА	Низкое энергопотребление, увеличение срока службы батареи		
Связь с внешним МК в режиме прерывания	Нет необходимости в опросе микросхемы		
Наличие регистра конфигурации состояния	Хранение восьми последних состояний		
Поворотная и кнопочная клавиатуры	Возможность работы в системах с различной конфигурацией		
Цифровой выход (I ² C-интерфейс)	Упрощенный интерфейс для связи с микроконтроллером на базе стандартного интерфейса для портативной электроники		
Диапазон рабочих температур: —40+ 85°C	Широкий температурный диапазон для использования в различных областях применения		
Тип корпуса: TSSOP-16, QFN -16, 5×5×1 мм RoHS	Наличие различных альтернативных решений при проектировании печатной платы, экологическая безопасность		

программы в меню, и после выбора нажимается клавиша ввода.

Для реализации подобного устройства может быть применена специализированная микросхема датчика приближения MPR083, блок-схема которого показана на рис. 4.

Основные характеристики микросхем MPR083 и MPR084 представлены в таблице 2.

Для разработки сенсорных панелей на базе датчиков семейства MPR08x Freescale Semiconductor предлагает две платы. Плата КІТМРR084EVM предназначена для разработки сенсорной клавиатуры на 8 клавиш с использованием датчика MPR084 и содержит в левой части разъемы для подключения датчика и измерительной аппаратуры и пьезокристаллический звуковой генератор, а в правой части — контактные площадки для 8 сенсорных клавиш (рис. 5).

Аналогичную конструкцию имеет и плата KITMPR083EVM, предназначенная для разработки сенсорного поворотного слайдера с использованием датчика MPR083, но вместо клавиш на его сенсорной площадке расположены 8 позиций поворотного слайдера (рис. 6).

Рис. 5. Оценочная плата для проектирования сенсорной клавиатуры с использованием датчика MPR084

Рис. 6. Оценочная плата для проектирования сенсорного поворотного слайдера с использованием датчика MPR083

Наряду с компанией Freescale Semiconductor лидирующие позиции в разработке и производстве емкостных датчиков приближения за-

Таблица 3. Сравнительные характеристики микросхем емкостных датчиков приближения различных производителей

Название микросхемы	MPR083/4	QT1080	AD7142	CY8C24094
Количество выводов	8	8	14	24
Диапазон рабочих напряжений	1,8-3,6 B	2,8-5,5 B	2,6-3,6 B	3,0-5,2 B
Наличие сторожевого таймера	+	-	-	+
Наличие таймера сброса	+	-	-	-
Тип корпуса и размеры	TSSOP-16, QFN-16 (5×5×1 мм)	TQFN-32 (5,1×5,10 мм), SSOP-48 (10,67х16,18 мм)	LFCSP-32 (5×5 мм)	QFN-56
Доступные интерфейсы связи	I2C	аналоговый	SPI, I ² C	USB, I ² C
Диапазон рабочих температур	−40+85 °C	−40+85 °C	−40+150 °C	−40+85 °C

нимают Analog Devices (AD7142), Cypress Semiconductor (CY8C24094), Quantum Research Group (QT1080). В таблице 3 представлены сравнительные характеристики микросхем емкостных датчиков приближения различных производителей.

Емкостные датчики приближения серии MPR08x компании Freescale Semiconductor — недорогой и современный продукт, удовлетво-

ряющий постоянно возрастающему потребительскому спросу. Использование микросхем данной серии открывает перед разработчиками свободу проектирования высокотехнологичных устройств на основе сенсорных технологий, давая возможность самостоятельного выбора размера и формы контакта, в полной мере удовлетворяющего каждому конкретному приложению.