ВЧ/СВЧ-элементы

Зарубежные миниатюрные фильтры нижних частот.

Ключ к информации о фильтрах

Разработчики радиоэлектронной аппаратуры СВЧ-диапазона все чаще применяют импортные фильтры нижних частот для подавления электромагнитных помех в цепях питания и импульсных сигналов [1], что позволяет выполнить разработку надежнее и оперативнее. Но для этого необходимо понимать и уметь анализировать зарубежную информацию о фильтрах: каталоги, рекламные листы, более подробное описание конкретного типа фильтра (data sheet), чтобы правильно выбрать необходимые фильтры. В журнале «Компоненты и технологии» опубликован аналогичный материал о зарубежных радиочастотных соединителях [2]. Настоящая статья призвана помочь потребителям и дистрибьюторам ориентироваться в зарубежной информации о миниатюрных фильтрах нижних частот, применяемых в радиоэлектронной аппаратуре.

Кива ДЖУРИНСКИЙ, к. т. н.

Фирмы — производители фильтров

За рубежом фильтры нижних частот разрабатывает и выпускает ряд фирм. Информация о самых известных компаниях приведена в таблице 1.

Таблица 1. Ведущие фирмы — производители фильтров

№№ п/п	Компания	Страна	Сайт
1	Spectrum Control, Inc.	США, Германия	www. spectrumcontrol.com
2	Tusonix, Inc.	Франция	www.tusonix.com
3	Eurofarad	Франция	www.eurofarad.com
4	Syfer Technology, Ltd.	Англия	www.syfer.com
5	Corry Micronics, Inc.	США	www.cormic.com
6	Oxley Development Co., Ltd.	США	www. oxleygroup.com
7	Advanced Monolitic Ceramics, Inc., A Johnson Comp.	США	www.amccaps.com
8	MuRata Electronics	Япония, США	www.murata.com

Лидирующую роль в разработке и производстве фильтров играют фирмы США, Франции, Англии, Германии и Японии. В последнее время производство конденсаторов и фильтров для поверхностного монтажа быстрыми темпами наращивают производители из стран Юго-Восточной Азии.

Конструкция фильтров

Основное назначение фильтров — подавление электромагнитных помех, нарушающих нормальную работу радиотехнических устройств. Проходные фильтры являются фильтрами нижних частот и состоят из керамического конденсатора и ферритовой индуктивности. Они имеют высокое сопротив-

ление изоляции и малую собственную индуктивность, что предотвращает нежелательные резонансные явления.

Электрические параметры фильтра определяются в основном электрической емкостью конденсатора. Применяют конденсаторы трубчатые (tubular capacitors) и многослойные дисковые (discoidal multilayer capacitors) (рис. 1). Величина электрической емкости конденсатора и ее стабильность зависят от керамического материала.

В зарубежных фильтрах нашли применение керамические материалы (на основе титаната бария) трех групп: СОG/NPO (сверхстабильные), X7R (стабильные), а также Z5U, Y5V, X7W (общего применения). При использовании керамики СОG/NPO с диэлектрической проницаемостью $\varepsilon = 10-100$ максимальное изменение электрической емкости не превышает 30 ppm/°C (ppm — parts per million, число единиц на миллион) в диапазоне температур от -55 до +125 °C. Для материала X7R ($\varepsilon = 2000-4000$) изменение емкос-

Рис. 1. Трубчатые и дисковые многослойные конденсаторы

ти составляет $\pm 15\%$, а для материалов Z5U, Y5V и X7W ($\epsilon = 5000-25\ 000$) — соответственно +22...-56, +22...-56 и +40...-90%.

В 1990-х годах компания АМР разработала фильтры на основе композиционного феррит-титанатного материала. В них на ферритовый сердечник нанесен слой керамики с высокой диэлектрической проницаемостью.

Трубчатые конденсаторы изготавливают с электрической емкостью от $10\,\mathrm{n}\Phi$ до $0,1\,\mathrm{m}\kappa\Phi$. Многослойные дисковые конденсаторы могут иметь емкость от $100\,\mathrm{n}\Phi$ до $10\,\mathrm{m}\kappa\Phi$. Минимальный наружный диаметр дискового конденсатора — $2\,\mathrm{m}$, внутренний диаметр — $0,5\,\mathrm{m}$.

Индуктивный элемент фильтров представляет собой кольца или трубки из термостабильного феррита (ferrite bead), надетые на центральный вывод фильтра.

Группы фильтров

Основные группы фильтров представлены в таблице 2.

Самую большую группу составляют фильтры, монтируемые в корпуса изделий. В нее входят миниатюрные резьбовые и безрезьбовые фильтры, герметизированные компаундом и металлостеклянным спаем, фильтры для прессовой посадки, фильтры для больших токов и напряжений, так называемые spin-фильтры, «глазковые» фильтры и керамические фильтры для устройств во взрывобезопасном исполнении (рис. 2а).

Большая группа керамических фильтров для поверхностного монтажа (рис. 26) включает: 1. 3-выводные конденсаторы — чипы групп 0805, 1205 и 1806 с размерами соответствен-

Nº	Группа		
1	Chassis mount filters Фильтры, монтируемые в корпуса и панели изделий		рис. 2а
2	Surface mount filters	rs Фильтры для монтажа на поверхность печатной платы	
3	Filter plates, Filter plate assemblies	Сборки фильтров с различными электрическими схемами на металлических платах	рис. 2в
4	Filtered terminal blocks Фильтрующие многовыводные блоки. Количество фильтров в блоке — не более 12		рис. 2г
5	Filtered connectors and adapters, Filtered connector modules	Многовыводные фильтрующие соединители и адаптеры со штыревым и гнездовым контактами для изделий с плотной компоновкой	рис. 2д

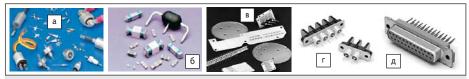


Рис. 2. Группы фильтров: а) монтируемые в корпуса и панели изделий; б) для монтажа на поверхность печатной платы; в) для монтажа на платы с фильтрами; г) фильтрующие блоки; д) фильтрующие соединители

но $2\times1,25\times0,8$; $3,2\times1,25\times0,7$ и $4,5\times1,6\times1,0$ мм. Рабочий ток фильтров — до 2 А, напряжение — до 100 В, рабочий диапазон температур: -55...+125 °C. Разработаны фильтры с электрической емкостью от 22 пФ до 470 нФ.

- 2. Неполярные фильтры с электрической схемой L-C и P_i чипы групп 0805 и 1205, рассчитанные на рабочий ток 100 мА и напряжение 25 В. Фильтры эффективно подавляют электромагнитные помехи, начиная с частоты 220 МГп.
 - 3-выводные конденсаторы и неполярные фильтры применяют в сотовых телефонах, базовых станциях, аудио- и видеотехнике.
- 3. Мощные C- и P_i -фильтры серий SSM и PSM (обозначение компании Spectrum Control), рассчитанные на токи соответственно 10 и 20 А. Фильтры имеют электрическую емкость до 2000 пФ (SSM) и до 10 000 пФ (PSM) и эффективно подавляют электромагнитные помехи в диапазоне частот до 18 ГГц. Область применения фильтров усили-

тели мощности, источники питания, устройства управления электродвигателями.

В фильтрующие сборки (Filter array assemblies) входят платы и блоки с установленными фильтрами. Применение фильтрующих сборок обеспечивает снижение стоимости устройств и повышение их надежности за счет устранения ошибок при выполнении электрической разводки. В фильтрующих платах установлены ряды фильтров с минимальным расстоянием между осями фильтров 2 мм (рис. 2в). Изготавливают платы с разнообразным расположением фильтров с электрической схемой C и P_i и емкостью до 5000 пФ для эффективного подавления электромагнитных помех на частотах до 18 ГГц. Рабочий ток фильтров 5 А, напряжение 50 В, рабочий диапазон температур: -55...+125 °C. По желанию заказчика могут быть изготовлены сборки прямоугольной, круглой или иной формы.

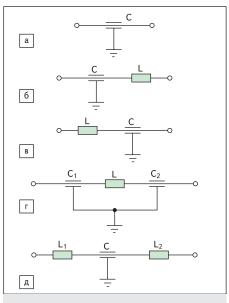
Разработаны и выпускаются фильтрующие блоки разнообразного конструктивного исполнения с количеством фильтров в блоке от 2 до 12 (рис. 2г). Допустимые ток и напряжение соответственно равны 20 А и 250 В. Блоки имеют жесткую конструкцию и предназначены для эффективного подавления помех на частотах до 18 ГГц в источниках питания, системах распределения мощности, телекоммуникационном оборудовании.

55

Фильтрующие соединители (рис. 2д) нашли широкое применение в современных радиотехнических устройствах. Замена стандартных низкочастотных соединителей на соединители со встроенными фильтрующими элементами — экономически эффективное решение обеспечения электромагнитной совместимости при создании надежных устройств с высокой плотностью компоновки. Разработаны и выпускаются фильтрующие соединители в герметичном исполнении, а также для эксплуатации при жестких условиях. Наиболее известны D-субминиатюрные фильтрующие соединители.

Конструктивные особенности

Основные конструктивные исполнения зарубежных фильтров приведены в таблице 3.


На рис. 3 показаны электрические схемы однозвенных фильтров нижних частот.

С-фильтр (рис. 3а), включенный между источником помехи и нагрузкой, шунтирует электромагнитную помеху на «землю», и она не попадает в нагрузку. Емкость фильтра для цепей питания должна быть тем большей величины, чем меньше сопротивление нагрузки. Этот фильтр является наиболее экономичным средством подавления помех в устройствах высокоскоростного переключения и в цифровых устройствах, так как он имеет наиболее низкую собственную индуктивность.

L-С-фильтр применяют в электрических цепях с несбалансированными сопротивле-

Таблица 3. Конструктивные исполнения зарубежных соединителей

Nº	Конструктивное исполнение			
	Обозначение в зарубежной документации	Отечественное обозначение		
1	EMI (electromagnetic interference) supression filter	Фильтр для подавления электромагнитных помех		
2	Low-pass filters	Фильтры нижних частот для подавления электромагнитных помех в широком диапазоне частот, начиная с частоты среза		
3	Circuit Configurations, Electrical Configurations are available in filters: C L-C P T	Электрические схемы фильтра (рис. 3). Проходной 3-выводной конденсатор с низкой индуктивностью (рис. 3а): • состоит из одного индуктивного и одного емкостного элементов (рис. 36, в); • содержит два емкостных и один индуктивный элемент, включенный между ними (рис. 3г); • состоит из двух индуктивных и одного емкостного элементов (рис. 3д)		
4	Panel mount screw — in filters, Screw mounted filters, Threaded filters, Bolt-in filters	Фильтры с резьбой на корпусе для резьбового соединения с корпусом изделия (рис. 4a). Электрическая схема фильтров — <i>C, L-C, P,</i> Pess6a or 2—56 UNC до 5,716—24 UNF.		
5	Solder-in filters, Solder mounted filters, Solder- in styles filters	Миниатюрные проходные безрезьбовые фильтры, впаиваемые в корпус изделия, герметизированные металлостеклянным спаем (рис. 46) или эпоксидным компаундом (рис. 48)		
6	Spin filters, Spanner Bushing Feedthrus, Spanner head filters	Миниатюрные резьбовые (резьба 2—56 UNC) фильтры без шестигранной головки для применения (в сочетании с компонентами для поверхностного монтажа) в изделиях с плотной компоновкой (рис. 4r)		
7	Press fit filter	Фильтр с накаткой на корпусе для прессовой посадки в корпус изделия (рис. 4д)		
8	Resin sealed filters, Epoxy sealed filters	Безрезьбовые и резьбовые фильтры, герметизированные с обоих торцов корпуса эпоксидным компаундом. Электрические схемы фильтров — C , L - C , P_i и T		
9	High Current/Voltage filters	Резьбовые фильтры, работающие при токах до 100 A и напряжениях до 1250 В (рис. 4e)		
10	Hermetic filters	Фильтры, герметизированные металлостеклянным спаем. Герметичность фильтров (скорость натекания) $10^{-8}10^{-10}$ м³- $\Pi a/c$		
11	Eyelet style filters,	Миниатюрные «глазковые» фильтры с электрической схемой C и P_i (рис. 4ж)		
12	Filter pin	Фильтрующий ввод, применяемый в соединителях и адаптерах		
13	Bulkhead filter	Проходной фильтр, устанавливаемый в отверстие панели и закрепляемый с обратной стороны гайкой и шайбой		
14	Explosion proof filters	Резьбовые и безрезьбовые керамические фильтры с электрической схемой P_i для устройств во взрывобезопасном исполнении		

Рис. 3. Электрические схемы фильтров: а) *С*-фильтра; б, в) *L-С*-фильтра; г) P_{r} фильтра; д) *Т*-фильтра

Рис. 4. Основные типы фильтров:

- а) резьбовые, герметизированные компаундом;
- б) безрезьбовые, герметизированные
- металлостеклянным спаем:
- в) безрезьбовые, герметизированные компаундом:
- г) резьбовые без шестигранной головки;
- д) для прессовой посадки;
- е) для больших напряжений и токов; ж) глазковые

ниями источника помехи и нагрузки. Возможны два варианта включения L-C-фильтра. При низком сопротивлении источника и высоком сопротивлении нагрузки применяют схему рис. 36, в противоположном случае — схему, представленную на рис. 3в. Для правильного выбора должны быть известны величины этих сопротивлений во всем диапазоне рабочих частот. Если они не известны, правильнее выбирать схему рис. 3в.

 P_i -фильтр (рис. 3г) наиболее эффективен в электрических цепях с неизвестными или отличающимися друг от друга сопротивлениями источника и нагрузки. Его применение предполагает низкие сопротивления источника и нагрузки. Наличие второго конденсатора значительно улучшает эффективность подавления помех. P_i -фильтры не рекомендуется использовать в цепях коммутации.

Т-фильтр (рис. 3д) предназначен для применения в цепях коммутации при высоких сопротивлениях источника и нагрузки.

Кроме того, применяют сдвоенные P_i и T-схемы.

Фильтры различных конструкций показаны на рис. 4.

Миниатюрные фильтры в подавляющем большинстве герметизированы эпоксидным компаундом с низким коэффициентом термического расширения (рис. 4а, в). Компаунд, заполняющий внутренние полости в корпусе фильтра, поддерживает вывод фильтра, повышает жесткость конструкции и защищает конденсатор от воздействия влаги из окружающей среды. Требование герметичности к этим фильтрам не предъявляют. В перечне типовых испытаний согласно стандарту МІІ-F-28861 испытание на герметичность для них исключено.

Фильтры, герметизированные металлостеклянным спаем, выпускают двух типов:

- миниатюрные безрезьбовые фильтры, в основном проходные конденсаторы (рис. 46);
- мощные резьбовые фильтры для больших токов и напряжений (рис. 4e).

Зарубежные компании не производят миниатюрные резьбовые фильтры, герметизированные металлостеклянным спаем, хотя такие фильтры наиболее оптимальны для герметизированных изделий повышенной надежности.

Spin-фильтры (рис. 4г) — это миниатюрные резьбовые фильтры, обеспечивающие наименьшее межцентровое расстояние при установке в ряд и не требующие пайки при монтаже в изделие. Для вкручивания в корпус изделия необходим специальный инструмент. Фильтры имеют электрическую емкость от 10 до 10 000 пФ. Их рабочий ток 5А, напряжение 50 В, рабочий диапазон температур: −55...+125 °C. Такие фильтры применяют в синтезаторах частоты, усилителях и в других изделиях с плотной компоновкой.

Фильтры для прессовой посадки (рис. 4д) разработаны для применения в изделиях, не допускающих нагрева при пайке. Фильтры имеют емкость от 5 до 30 000 пФ и эффективно поглощают электромагнитные помехи на частотах до 10 ГГц. Их рабочий ток 5 А, напряжение 50–200 В, рабочий диапазон температур: –55...+125 °C. Разработаны фильтры, герметизированные металлостеклянным спаем с одного торца и компаундом — с другого. Область применения фильтров — аттенюаторы, синтезаторы частоты, осцилляторы.

Резьбовые фильтры для больших токов и напряжений (рис. 4e) широко применяют в источниках питания, системах зажигания, медицинской аппаратуре. Фильтры имеют электрическую схему C, L-C, P_i или T, емкость до нескольких микрофарад и эффективно подавляют электромагнитные помехи в диапазоне частот от 1 МГц до 18 ГГц. Герметичность фильтров обеспечивает их применение в агрессивных средах. Рабочий диапазон температур: $-55...+125\,^{\circ}$ C.

Миниатюрные «глазковые» фильтры — это керамические фильтры с тонкостенной втулкой на наружной поверхности для крепления в корпус изделия. Компании Corry Micronics и Oxley выпускают серии таких фильтров с электрической схемой C и P_i . Фильтры имеют емкость до 5000 пФ и рассчитаны на ток до 10 А. Рабочий диапазон температур: -55...+85 °C и -55...+125 °C.

Фильтры всех типов выпускают в соответствии с требованиями стандартов МІL-F-15733 и МІL-F-28861.

Основные параметры фильтров

К основным параметрам фильтров с разными электрическими схемами относятся:

- вносимое затухание (insertion loss);
- электрическая емкость (capacitance);
- рабочий ток (current rating, rated current);

- рабочее напряжение (voltage rating, working voltage);
- сопротивление изоляции (insulation resistance);
- герметичность (hermetic);
- рабочий диапазон температур (temperature range, operating temperature).

Вносимое затухание

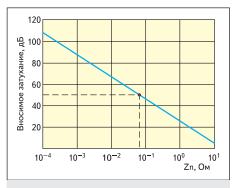
Вносимое затухание рассчитывают в децибелах как отношение напряжений помехи на нагрузке без фильтра (U_1) к напряжению (U_2) с включенным фильтром:

$$\alpha_{\partial B} = -20 \times \lg(U_1/U_2)$$
.

Например, если $U_1=100$ мВ, а $U_2=1$ мВ, то $\alpha_{\partial B}=-20 \times \lg(100/1)=-40$ дВ.

Следует подчеркнуть, что вносимое затухание определяют в измерительной схеме с волновым сопротивлением 50 Ом. При включении фильтра в электрическую схему, в которой сопротивления источника и нагрузки не равны 50 Ом, величина эффективного вносимого затухания фильтра отличается от измеренной [1]:

$$\begin{array}{l} \alpha_{3\phi\phi}\left(\pi\mathrm{B}\right) = \\ = -20 \times \lg[1 + (Z_{H} \times Z_{H} I(Z_{n}(Z_{H} + Z_{H}))], \end{array}$$


где Z_{H} и Z_{H} — сопротивления соответственно источника и нагрузки, Ом; Z_{n} — сопротивление линии передачи, Ом, определяемое по графику (рис. 5).

Например, если $Z_H=100$ Ом, $Z_H=50$ Ом, а величина вносимого затухания фильтра равна 50 дБ на частоте 100 МГц при измерении в 50-омной схеме, $Z_n=0.08$ Ом, то и α_{add} (дБ):

$$\begin{array}{l} \alpha_{\text{эфф}}\left(\text{дБ}\right) = -20 \times \text{lg}[1+\\ +(100 \times 50/(0{,}08(100 + 50))] = -52{,}4\text{ дБ}. \end{array}$$

Это обстоятельство следует учитывать при сравнении параметров отечественных фильтров, вносимое затухание которых определяют в 75-омной измерительной схеме, с зарубежными фильтрами.

Вносимое затухание фильтров с разными электрическими схемами зависит от частоты. Сравнение частотных зависимостей вноси-

Рис. 5. График для определения сопротивления линии передачи

мого затухания фильтров, построенных на основе разных электрических схем, показывает, что эффективность подавления электромагнитных помех возрастает в последовательности C, L-C, T, P_i -схемы [1]. Зарубежные компании приводят величины вносимого затухания на определенных частотах, например 10, 100, 300 МГ $\mathfrak q$, 1 и 10 ГГ $\mathfrak q$. Величину вносимого затухания отечественных фильтров обычно приводят как среднее значение в заданном диапазоне частот. Это обстоятельство следует учитывать при сравнении отечественных и зарубежных фильтров.

Важным параметром фильтра является частота среза (cut-off frequency) — частота, на которой вносимое затухание фильтра равно 3 дБ. Она определяет нижнюю границу частотного диапазона подавления помех. Частота среза зависит от электрической емкости фильтра.

Электрическая емкость

К основным характеристикам фильтра относится величина его электрической емкости. Емкость определяет все основные параметры фильтра: частоту среза, ширину полосы перехода, уровень вносимого затухания в полосе задержания. Чем больше величина электрической емкости, тем меньше частота среза, ширина полосы перехода и тем выше уровень вносимого затухания. Емкость фильтров для применения в цепях питания должна быть не менее 1500 пФ, для цепей наносекундных импульсных сигналов (чтобы не исказить форму импульса) — не более 50 пФ [1].

Рабочий ток и рабочее напряжение

Это номинальные параметры, указанные в технической документации, при которых фильтр может работать в заданных условиях в течение срока службы. При температуре от 105 до 125 °C максимальный ток должен быть снижен до величины 60% от величины номинального тока. Номинальное напряжение переменного тока определено для работы фильтра при температуре менее 125 °C и частоте до 400 ГГц.

Сопротивление изоляции

Сопротивление изоляции — это электрическое сопротивление изоляции между корпусом и выводом фильтра, измеренное при определенном напряжении. Оно определяет ток утечки фильтра. Величина сопротивления изоляции зарубежных фильтров — от 500 МОм до 1 ГОм.

Герметичность

Само понятие «герметичность» без указания величины скорости натекания гелия (или другого газа) через фильтр не имеет практического смысла. Известны 3 уровня герметичности [1]:

- 1. Герметичность не регламентируется и поэтому не гарантируется. Это относится ко всем фильтрам, герметизированным компаундами.
- 2. Скорость натекания $(1,3\times10^{-6}...1,3\times10^{-7})$ м³·Па/с средний уровень герметичности.

Такой уровень обеспечивают, например, пластмассовые корпуса микросхем. Фильтры среднего уровня герметичности нежелательно применять в надежных герметизированных изделиях с большим сроком сохраняемости. Они предназначены для изделий менее ответственного назначения или кратковременного действия.

3. Скорость натекания (1,3×10⁻⁹...1,3×10⁻¹¹) м³·Па/с — высокий уровень герметичности (вакуумная плотность) фильтра. Герметичность обеспечивается за счет внутреннего металлостеклянного спая. Такую скорость натекания определяют масс-спектрометрическим методом при помощи гелиевого течеискателя. Фильтры этого уровня герметичности необходимы для применения в герметизированной аппаратуре высокой надежности.

Рабочий диапазон температур

Рабочий диапазон температур зарубежных фильтров: –55...+85 °C и –55...+125 °C. Температура существенно влияет на электрическую емкость конденсатора, а значит, и на параметры поглощения фильтра.

Монтаж фильтров в изделия

Керамический конденсатор и изоляция фильтра могут быть повреждены при нарушении технологии монтажа фильтра в изделие. Поэтому, выбирая фильтры, необходимо ознакомиться с рекомендациями компании по их монтажу. Они сводятся к следующему:

- Монтажные отверстия в корпусе или панели изделия должны иметь форму и размеры в соответствии с data sheet на данный тип фильтра.
- 2. Момент вкручивания в корпус изделия резьбовых фильтров не должен превышать величин, рекомендуемых компанией-изготовителем (табл. 4).
 - Запрещается применять для вкручивания фильтра плоскогубцы, струбцины и другой сдавливающий инструмент.
- 3. Следует избегать скручивания и изгиба выводов фильтров. Если есть необходимость обрезать вывод, это нужно выполнять до монтажа фильтра в изделие.
- 4. Скорость нагрева при пайке не должна превышать 3 °С/с. Пайку фильтров большинства типов рекомендуется производить оловянно-свинцовым эвтектическим припоем (аналогичным отечественному припою ПОС-61 с температурой плавления 183 °C). При пайке паяльником температура его жала не должна превышать 270 °C, время пайки должно быть 3-5 с. По возможности следует применять теплоотвод от корпуса фильтра. Необходимо также учитывать, что в настоящее время зарубежные фирмы при изготовлении фильтров гражданского назначения перешли на бессвинцовую технологию в соответствии с европейской директивой RoHS (Restriction of Hazardous Substances), введенной в действие с июля

Таблица 4. Момент вкручивания резьбовых фильтров

Тип резьбы на корпусе фильтра	Максимальная величина момента вкручивания по данным компаний, нм		
на корпусе фильтра	Spectrum Control	Oxley	Syfer
4-40 UNC, M2,5×0,45, M3×0,5	0,17	0,20	0,15
6-32 UNC, M3,5×0,6	0,34	0,20-0,30	0,18
8-32 UNC, M4×0,5	0,45	0,20-0,30	0,25
12-32 UNC, M5×0,5	0,68	0,30-0,40	0,30
1/4-28 UNF, M6×0,75	0,79	0,50	-

2006 года. Согласно этой директиве пайку фильтров следует производить бессвинцовыми припоями (SAC) состава олово-медьсеребро (SnCuAg). Эти припои имеют температуру плавления более чем на 30 °C выше, чем у стандартного припоя со свинцом. Фильтры, изготовленные по бессвинцовой технологии, имеют специальное обозначение. Так, компания Corry Micronics к обозначению таких фильтров добавляет суффикс «С». Например, обозначение фильтра FT 10005-103 Z выглядит как FT 10005-103 Z/C. На изделия военного назначения директива RoHS не распространяется.

5. Фильтры для поверхностного монтажа необходимо устанавливать на контактные площадки (раd, track) печатной платы. Геометрия и размеры контактных площадок приведены в data sheet на фильтры конкретных типов. Компании обычно дают подробные рекомендации по выбору припоя и температурному режиму пайки фильтров на печатную плату.

Указанные рекомендации следует учитывать и при монтаже отечественных фильтров, естественно, с коррекцией на температурный режим пайки.

Заключение

Для обеспечения оптимальных параметров разрабатываемой аппаратуры необходимо правильно выбрать зарубежный фильтр и обеспечить его монтаж, используя соответствующий инструмент.

Важным показателем при выборе фильтра является его цена. Стоимость фильтров высокой надежности американских и европейских фирм выше, чем фильтров азиатских производителей. Однако для сложных многофункциональных устройств СВЧ, особенно военного назначения, необходимо применять фильтры, имеющие высокий уровень параметров и надежность, и экономия на фильтрах недопустима.

Литература

- 1. Джуринский К. Миниатюрные коаксиальные радиокомпоненты для микроэлектроники СВЧ. М.: Техносфера, 2006.
- Джуринский К. Зарубежные радиочастотные соединители. Ключ к информации о соединителях // Компоненты и технологии. 2008. № 11.