Цифровая система LTC2983:

высокоточное измерение температуры

Том ДОМАНСКИ (Tom DOMANSKI)

В статье представлен метод измерения температуры от восемнадцати двухпроводных датчиков, которое выполняется с помощью высокоточной цифровой системы LTC2983.

икросхема высокоточной цифровой системы для измерения температуры LTC2983 может измерять температуру с использованием самых разнообразных датчиков и в цифровом формате выдавать результат в градусах Цельсия или Фаренгейта, с точностью 0,1 °C и разрешением в 0,001 °C. Система работает практически со всеми стандартными типами сенсоров — B, E, J, K, N, S, R, Т или с термопарами пользователя, автоматически компенсирует температуру холодного спая и линеаризует результаты измерения. Данное устройство может измерять температуру со стандартными 2-, 3- или 4-проводными резистивными датчиками температуры RTD (англ. RTD — resistance temperature detector), repмисторами и диодами.

Для измерения температуры (рис. 1) всего одна микросхема LTC2983 может поддерживать до 18 двухпроводных RTD-датчиков. Как известно, каждое измерение датчика типа RTD предполагает одновременное считывание двух напряжений — на резисторе R_{SENSE} и на соответствующем RTD-зонде последовательности (RTDx). Эти напряжения создаются протекающим через систему датчиков током I_{S} . Каждое из напряжений является дифференциальным, и в LTC2983 приняты меры для эффективного подавления синфазных помех, при этом общее число последовательно включенных RTD-датчиков не оказывает отрицательного влияния на отдельные измерения.

Выбор типа RTD-датчика зависит от необходимой точности измерения температуры и требований по чувствительности и помехоустойчивости. Например, если выбраны датчики 2-проводного типа и используются PT-1000, то такая система может оказаться более устойчивой в присутствии паразитного сопротивления в подключенных проводах.

После того как выбран тип RTD, необходимо определить значения тока I_S и номинал резистора R_{SENSE} . Это нужно сделать так, чтобы напряжение на самом верхнем резисторе цепочки (имеется в виду напряжение

на входе СН1) не превысило предельное значение максимально допустимого синфазного входного напряжения для микросхемы LTC2983 во всем диапазоне рабочих температур системы. Данное условие описывается следующим выражением:

$$V_{DD}$$
-0,3 \geq $\left(R_{SENSE} + \sum_{i=1}^{N} \text{RTD}_{i}\right) \times I_{S}$,

где N = 1, 2...18.

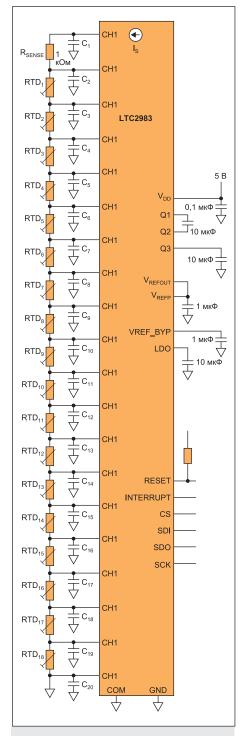

Давайте рассмотрим систему, показанную на рис. 1, и примем следующие ограничения: напряжение питания — 5 В, все датчики RTD — это датчики типа PT-100, а максимально ожидаемая температура — 150 °С. В таблицах 1 и 2 показано слово, описывающее назначение канала для каждого из PT-100 зондов. Для получения большей информации обратитесь к разделу Channel Assignment Memory Map («Назначение каналов в карте распределения памяти») в техническом описании LTC2983. В этом примере датчик RTD1 подключается к каналу CH3, датчик RTD2 — к каналу CH4 и т. д.

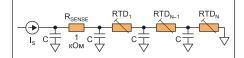
Таблица 1. Слово назначения канала RTD от CH2 до CH20

Функция		Битовое поле	Значение	Описание
Тип датчика		31:27	01100	PT-100
Канал подключения датчика		26:22	00010	CH2
Конфигурация датчика		21:18	0001	2-проводной
Ток через датчик		17:14	1000	1 мА
Характеристика зависимости сопротивления RTD от температуры		13:12	01	По американ- ской кривой
Данные для RTD пользователя	Адрес	11:6	000000	-
	Длина	5:0	000000	_

Таблица 2. Слово назначения канала резистора R_{SENSE}

Функция		Битовое поле	Значение	Описание
Тип датчика		31:27	11101	Сенсорный резистор (29)
Номинал сенсорного резистора	Целое число	26:10	000000 1111101000	1 кОм
	Дробная часть	9:0	0000000000	

Рис. 1. Система измерения температуры для 18 RTD-датчиков, выполненная на LTC2983


Время установления для последовательно включенных RTD-датчиков

После того как источник тока возбуждения включен, для завершения переходного процесса, связанного с зарядом эквивалентной суммарной емкости С через эквивалентный суммарный резистор R, ему требуется некоторое конечное время установления $t_{\rm S}$. Оно зависит от общего числа количества и номинала отдельных резисторов (R_{SENSE} и суммарного сопротивления всех подключенных RTD) и конденсаторов на каждом входном узле. Верхняя граница $t_{\rm S}$ может быть оценена путем укрупнения общего RC, но это дает чересчур пессимистичный результат. Другой способ получения t_S — обращение к простой схеме, которую можно использовать для компьютерного моделирования (рис. 2).

Результаты моделирования показаны на рис. 3. Здесь все конденсаторы выбраны номиналом 100 нФ, а номинал резистора R_{SENSE} равен 1 кОм. Каждый график показывает время установления t_S с точностью до 0,1% от величины напряжения на последнем RTD-датчике последовательности. Для каждого графика применялись RTD одного типа.

По умолчанию для системы LTC2983 время задержки между включением источника тока возбуждения и началом преобразования АЦП $t_{DELAY}=1\,$ мс. Однако этого значения при использовании более чем двух датчиков PT-100 в последовательно включенных RTD уже недостаточно (рис. 3).

Время t_{DELAY} может быть увеличено установкой необходимого значения 0x0ff в регистре конфигурации MUX. По умолчанию регистр очищается. Каждая единица млад-

Рис. 2. Модель линии задержки для последовательно соединенных RTD-датчиков

шего разряда (LSB) регистра имеет значение, равное 100 мкс, и добавляется к заданному по умолчанию времени t_{DELAY} . Для получения дополнительной информации о задержке MUX обратитесь к разделу Supplemental Information («Дополнительная информация») в техническом описании. Например, если вы написали 0x10 в 0x0ff, это приводит к следующему значению:

$$t_{DELAY}$$
 = 1 мс+0×10×100 мкс = 2,6 мс.

Максимальное значение программируемой задержки составляет 26,5 мс, этого вполне достаточно для использования до шести датчиков типа PT-1000, учитывая C = 100 нФ (рис. 3).

Время задержки t_{DELAY} устанавливается для каждого отдельного цикла АЦП. Но поскольку каждое измерение RTD требует двух циклов АЦП, то общее время преобразования для всех RTD приблизительно будет равно:

$$t_{TOTAL} = (2t_{DELAY} + t_{CONV})N.$$

Когда t_{DELAY} программируется пользователем, для этого в техническом описании дается значение t_{CONV} . Оно приведено в таблице Complete System Electrical Characteristics («Полные электрические характеристики си-

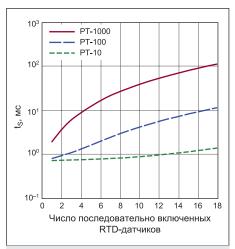


Рис. 3. Результаты компьютерного моделирования времени установления для последовательности RTD-датчиков разных типов

стемы») как типовое значение в 164 мс, которое включает установленную по умолчанию задержку MUX, а N — это число RTD, которые должны быть опрошены и измерены.

Заключение

Система LTC2983 поддерживает до 18 двухпроводных RTD-датчиков, но при этом необходимо обязательно учитывать задержку установления, которую вносит RC системы. Задача может усложниться в зависимости от числа и типа используемых в каждом конкретном случае RTD-датчиков. Проблемы, вызванные задержкой, могут быть исследованы с помощью представленной в данной статье модели и компьютерного моделирования.