ДАТЧИКИ ГАЗА ФИРМЫ FIGARO

Фирма Figaro (Япония) — один из мировых лидеров по производству датчиков детектирования и определения концентрации газов и газовых примесей в составе воздуха. Весь производственный процесс, включающий разработку новых типов датчиков, их изготовление и тестирование, имеет международный сертификат качества ISO 9001, что гарантирует хорошие технические параметры датчиков, их надежность и стабильность в эксплуатации. Объем производимой продукции Figaro на сегодняшний день составляет миллион датчиков в месяц. Среди потребителей продукции фирмы такие известные мировые компании, как BMW, Mitsubishi Heavy Industries, General Motors, Daikin и другие.

Более 40% объема продаж фирмы Figaro на мировом рынке приходится на долю бытовых детекторов утечки природного газа, устанавливаемых в домах, оборудованных газовыми плитами или газовыми системами отопления (табл.1). В Японии обязательное наличие подобных устройств в домах закреплено законодательно. И хотя в России принятие таких законодательных актов даже не планируется, вопрос обеспечения безопасности жилищ особенно актуален в связи с распространенностью использования газа в быту и участившимися случаями утечки и взрывов газа в разных регионах страны. Второе место по потреблению датчиков фирмы (около 20%) занимают воздухоочистители, кондиционеры и системы вентиляции помещений. На третьем месте (15%) — автомобильная электроника с системами кондиционирования и климат-контроля салона, детекторы взрывоопасных газов для газовых двигателей и др. Это направление также перспективно для российского рынка.

Датчики на основе оксида олова. Принцип их действия основан на изменении электропроводности полупроводниковой пленки в результате адсорбции газа на ее поверхности. На трубчатую подложку из оксида алюминия (рис.1) наносится тонкий слой окси-

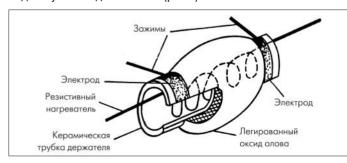
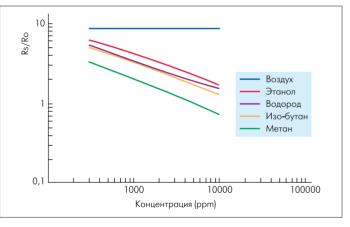



Рис. 1. Схема датчика на основе оксида олова

natig n@platan.ru да олова (SnO₂), легированного элемент заторов (Pt, Cu, Ni, Pd), чтобы обеспечи

Н.Игнатьева

да олова (SnO $_2$), легированного элементами со свойствами катализаторов (Pt, Cu, Ni, Pd), чтобы обеспечить более высокую чувствительность полупроводника к конкретному типу газа примеси. При нагреве сенсора с помощью нагревательного элемента, выполненного в конструктиве с датчиком, до рабочей температуры (~400°C) происходит адсорбция содержащегося в воздухе кислорода на его поверхность с мелкозернистой структурой. В результате электрическая проводимость сенсора изменяется в зависимости от концентрации газа примеси. Отклик датчика выражается через изменение его сопротивления в зависимости от концентрации газа, а его скорость зависит от модели датчика и конкретного газа примеси. В соответствии с соотношением между сопротивлением сенсора и концентрацией газа примеси — $R = A \ [C]^{-\alpha}$ (где R = 0) электрическое со-

<u>Рис.2. Кривые чувствительности датчика на основе оксида олова</u> (TGS2611)

противление сенсора, А и α — константы, [C] — концентрация газа примеси). Зависимость сопротивления датчика от концентрации газа примеси линейна в логарифмическом масштабе для рабочего диапазона концентраций (от единиц ppm до нескольких тысяч ppm). Датчик одновременно чувствителен к различным типам газов примеси. Для обеспечения оптимальной селективности к определенному типу необходимо, во-первых, вводить в оксид олова специальные легирующие добавки и, во-вторых, задать необходимую рабочую температуру сенсора, что достигается подачей на нагревательный элемент определенного постоянного напряжения. На рис.2 показаны кривые чувствительности датчика.

Схема подключения датчика достаточно проста (рис.3). Выходной сигнал снимается с резистора R_L , с помощью которого для защиты датчика можно регулировать его потребляемую мощность. От выбора R_L зависит стабильность рабочих характеристик датчика. На скорость протекания химической адсорбции газа на поверхнос-

Таблица 1. Области применения датчиков фирмы Figaro

	Модели	Область применения		
Назначение		Изделия массового потребления	Промышленные изделия	
Контроль взрывоопасных газов - метан - пропан - водород - другие	TGS842, TGS2611 TGS813, TGS2610 TGS821, TGS2620 TGS813, TGS2610	Детекторы утечки газа в домах и гаражах	Детекторы утечки газа на предприятиях общепита. Системы для выявления утечки газа в офисных помещениях, на промышленных предприятиях, береговых и надводных нефтяных платформах. Портативные детекторы утечки газа	
Контроль токсичных газов - угарный газ (CO) - аммиак - сероводород	TGS203, TGS2442 TGS826 TGS825	Детекторы угарного газа в домах, гаражах, бытовых системах противопожарной безопасности	Системы обнаружения СО в местах парковки и гаражах. Обнаружение утечки аммиака в холодильных установках. Детекторы аммиака в сельском хозяйстве. Системы анализа газов на промышленных предприятиях. Портативные газоанализаторы	
Контроль вентиляции салона автомобиля - выхлопы бензина - выхлопы дизельного топлива	TGS2104, TGS2201 TGS2106, TGS2201	-	Системы контроля вентиляции салона автомобиля	
Контроль алкоголя	TGS822, TGS2620	Бытовые алкогольные детекторы	Промышленные и медицинские алкогольные детекторы	
Анализ состава органических растворителей	TGS822, TGS2620	-	Анализаторы для химчисток и предприятий, производящих полупроводниковые компоненты и изделия органической химии	
Определение утечки фреона	TGS830, TGS831, TGS832	-	Детекторы утечки фреона для холодильных установок, кондиционеров	
Контроль пищевых испарений - алкоголь - водяной пар	TGS880, TGS2181 TGS883T, TGS2180	Микроволновые печи	Микроволновые печи	
Контроль состояния воздуха - углекислый газ (CO ₂) - загрязнители воздуха	TGS4160 TGS800, TGS2100, TGS2600, TGS2602	Воздухоочистители Кондиционеры Системы вентиляции	Системы вентиляции в жилых и офисных зданиях, автомобильные системы кондиционирования	
Определение концентрации кислорода в воздухе	KE-25, KE-50	Кислородные датчики	Кислородные детекторы	

ти и, соответственно, на чувствительность датчика влияют температура и влажность окружающей среды, что требует применения схемы температурной компенсации, содержащей термистор и резисторы R1, R2 и R3.

Фирма Figaro выпускает две серии датчиков -8 и 2000 - на основе оксида металла нового поколения, отличающиеся от датчиков предыдущей серии более современной технологией изготовления и конструкцией нагревательного элемента. Типономиналы выпускае-

Таблица 2. Типы датчиков газа серий 8 и 2000

Газ	Диапазон измерений (ppm)	Серия 8	Серия 2000
Взрывоопасные газы Пропан Метан (природный газ) Водород	500 - 10000 500 - 10000 50 - 1000	TGS813 TGS842 TGS821	TGS2610 TGS2611 TGS2620
Токсичные газы CO — угарный газ NH_4 — аммиак H_2S — сероводород	50 - 1000 30 - 300 5 - 100	TGS203 TGS826 TGS825	TGS2442
Выхлопные газы Выхлопы бензина Выхлопы дизельного топлива	10 - 100 0,1 - 1		TGS2104, TGS2201 TGS2105, TGS2201
Органические растворители, пары алкоголя и другие летучие соединения	50 - 5000	TGS822	TGS2620
Фреоны R-22, R-113 R-21-R-22 R-134a,R-22	100 - 3000 100 - 3000 100 - 3000	TGS830 TGS831 TGS832	
Загрязнители воздуха внутри помещений	<10	TGS800	TGS2100 TGS2600, TGS2602
Пищевые испарения Алкоголь Водяной пар Летучие пары	10 — 1 000 1 — 150 (г/м³)	TGS880 TGS883T	TGS2181 TGS2180 TGS2281

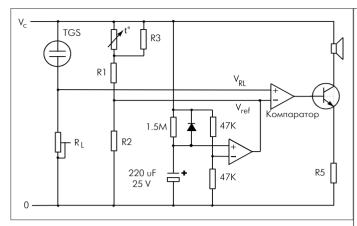
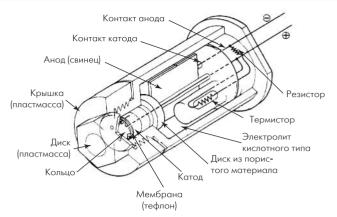


Рис.З. Схема подключения датчика, изготовленного на основе оксида олова

мых датчиков на основе оксида металла представлены в табл.2, а основные электрические параметры серий 8 и 2000 — в табл.3.


Таблица 3. Основные электрические параметры датчиков серий 8 и 2000

Характеристика	Серия 8	Серия 2000
Напряжение, подаваемое		
на нагревательный элемент		
(V _H), B	5 ±0,2 (AC/DC)	$5 \pm 0.2 (AC/DC)$
TGS203*	-	-
TGS2442	$V_{H} = 0.8 \pm 3\% \text{ (AC/DC)},$	5 ±0,2 B (DC,
	время срабатывания 60 с	импульсный режим)
TGS2104, TGS2105, TGS2201	$V_{H} = 0.25 \text{ B} \pm 3\% \text{ (AC/DC)},$	7 ±0,35 B (DC)
	время срабатывания 90 с	
Ток через нагревательный	132-200**	42-203**
элемент, мА		
Напряжение питания датчика (V _C), В	≤ 24 (AC/DC)	$V_{\rm C} = 5 \pm 0.2 \text{B (DC)}$
TGS203	≤ 12 (AC/DC)	_
TGS2442	_	$V_{\rm C} = 5 \pm 0.2 \text{B} (DC,$
		импульсный режим)
TGS2104, TGS2105, TGS2201	-	≤ 15 (DC)
Нагрузка	Подстроечный	резистор
Потребляемая мощность датчика	< 15 MB₁	

Для корректной работы датчика необходимо согласовать измерительную схему с внутренним сопротивлением конкретной модели датчика (см. подробную техническую документацию)

Датчики на основе жидкого электролита для измерения концентрации кислорода КЕ-25, КЕ-50. Чувствительный элемент кислородных датчиков — гальваническая ячейка с раствором электролита, в качестве которого обычно используется водный раствор щелочи калия (КОН). Однако срок службы этого электролита мал, а сопротивляемость к присутствию в газовой смеси углекислого газа низкая. В датчиках Figaro применяется созданный по оригинальной технологии многокомпонентный электролитический раствор кислоты, стойкий к воздействию таких газов, как СО₂, легко вступающих в реакцию окисления. По сроку службы электролить кислотного типа десятикратно превосходит щелочные электролиты.

Конструкция кислородного сенсора состоит из гальванической батареи со свинцовым анодом, пленочным золотым катодом с нанесенной непористой тефлоновой мембраной и электролитом (рис.4). Молекулы кислорода проникают через мембрану и вступают на поверхности катода в электрохимическую реакцию с раствором электролита. Между катодом и анодом включены термистор (для температурной компенсации) и резистор, с которого снимается напряжение. Значение тока, протекающего через электролит, пропорционально концентрации кислорода в измеряемой газовой

Рис. 4. Конструкция кислородного датчика

смеси. При этом значение выходного напряжения однозначно характеризует эту концентрацию (рис.5). На рис.6 показана схема включения кислородного датчика с дополнительной схемой температурной компенсации (внешний термистор), при помощи которой может быть расширен рабочий температурный диапазон датчика.

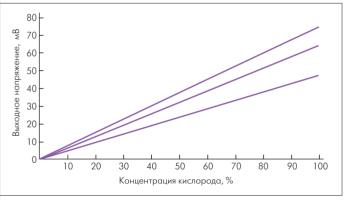


Рис.5. Характеристика чувствительности датчика KE-25 (показан разброс значений выходного напряжения)

На электродах сенсора с электролитом кислотного типа происходят следующие химические реакции, приводящие к образованию оксида свинца, хорошо растворяемого как в кислотной, так и в щелочной среде:

Катод:
$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

Анод: $2Pb + 2H_2O \rightarrow 2PbO + 4H^+ + 4e^-$

В целом: $O_2 + 2Pb \rightarrow 2PbO$

Если оксид свинца полностью не растворяется и остается на электроде, потенциал анода постепенно снижается. Это приводит к ухудшению чувствительности датчика и выходу его из строя. Срок службы датчика зависит от степени растворимости оксида свинца в электролите конкретного типа. Растворимость в кислотном электролите, который применяется в датчиках фирмы Figaro, в 20 раз превышает растворимость оксида свинца в щелочном электролите.

Если в измеряемой газовой смеси присутствует углекислый газ, в случае щелочного электролита начинается реакция угольной кислоты с материалом анода. При этом образуется нерастворимый карбонат свинца (PbCO₃), и сенсор постепенно выходит из строя. В кислотном электролите эта реакция не происходит, и присутст-

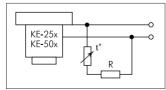


Рис.6. Схема включения кислородного датчика с дополнительной схемой температурной компенсации

^{*}Сопротивление НЭ датчика ТGS203 мало (1,9 Ом). Он может работать в двух режимах с различным напряжением и, соответственно, с разным временем срабатывания;

^{**} Зависит от модели датчика (подробно – в технической документации)

вие углекислого газа в измеряемой смеси не влияет на характеристики датчика. Технические характеристики кислородных датчиков приведены в табл.4.

Таблица 4. Характеристики датчиков КЕ-25 и КЕ-50

Параметры	KE-25	KE-50
Диапазон концентраций кислорода в воздухе, %	0-100	0-100
Точность, %	1	2
Задержка отклика (90%), с	12	60
Срок службы, лет	5	10
Стандартный температурный диапазон, °С	5-40	5-40
Давление воздуха, атм	0,5-1,5	0,5-1,5

Датчик на основе твердого электролита для определения концентрации ${\rm CO_2}$ TGS4160 имеет гибридную структуру, образуемую чувствительным элементом (рис.7) и внутренним термистором. Сенсор состоит из твердого электролита, заключенного между двумя электродами. Носители заряда — катионы натрия (Na+). Нагревательный элемент выполнен в виде платиновой подложки. Катод (электрод сравнения) изготавливается из карбоната лития и золота, анод (измерительный электрод) — из золота. Термистор служит для компенсации температурной зависимости сенсора. В среде с углекислым газом на электродах сенсора происходят следующие электрохимические реакции:

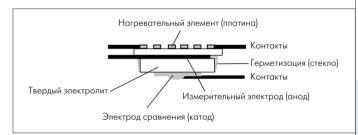


Рис.7. Конструкция чувствительного элемента датчика на основе твердого электролита

Катод: $2Li^+ + CO_2 + 1/2O_2 + 2e^- = Li_2CO_3$ Анод: $2Na^+ + 1/2O_2 + 2e^- = Na_2O$ В целом: $Li_2CO_3 + 2Na^+ = Na_2O + 2Li^+ + CO_2$

В результате электрохимической реакции на элементе появляется разность потенциалов (ЭДС), являющаяся откликом датчика. Согласно закону Нернста, ЭДС = $E_c - (RT/2F)\ln(P_{CO_2})$, где $E_c -$ константа, R -универсальная газовая постоянная, F - постоянная Фа-

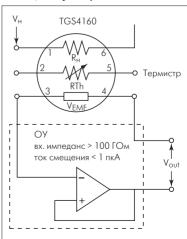


Рис.8. Схема включения датчика ТGS4160 для измерения концентрации углекислого газа

радея, T — абсолютная температура (K), P_{CO_2} — парциальное давление углекислого газа.

Для поддержания оптимальной температуры сенсора на нагревательный элемент подается напряжение. Выходной сигнал датчика (ЭДС) преобразуется с помощью операционного усилителя с высоким импедансом (> 100 ГОм) и малым током смещения (< 1 пА) (АD795). Поскольку датчик на твердом электролите представляет собой батарею, при использова-

нии подобной схемы абсолютное значение ЭДС будет флуктуировать. Но при этом значение ЭДС изменяется в соответствии с изменением концентрации углекислого газа в среде. Чтобы обеспечить максимальную точность измерений. фирма Figaro предлагает специально разработанный для этих

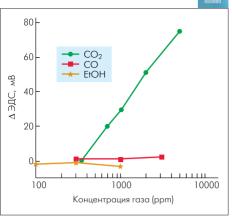


Рис.9. Чувствительность датчика TGS4160 к различным газам

целей измерительный модуль, содержащий микропроцессор для цифровой обработки сигнала (рис.8). На рис.9 приведены зависимости чувствительности датчика TGS4160 к различным газам. Регистрируемый параметр — разность между значениями ЭДС при концентрации углекислого газа 350 ppm (ЭДС1) и текущим значением концентрации (ЭДС2) — DЭДС. Как видно из рис.9, датчик TGS4160 дает хорошую линейную зависимость между DЭДС и концентрацией углекислого газа (в логарифмическом масштабе), тогда как для угарного газа (СО) и этанола (C_2H_5 OH) значение DЭДС с увеличением концентрации не изменяется.

Датчик концентрации углекислого газа на основе твердого электролита TGS4160 имеет следующие характеристики:

Диапазон концентраций, ppm300-5000	
Напряжение, подаваемое	
на нагревательный элемент (VH), В	2)
Ток через нагревательный элемент, мА~250	
Сопротивление нагревательного элемента (RH)	
при 25°C, Ом	
Потребляемая мощность нагревательного элемента, Вт~1,25	
Сопротивление встроенного термистора, кОм100 ±5%	
Константа встроенного термистора, %	
Рабочие условия окружающей среды	
температура, °С10-50	
относительная влажность, %до 95	
,	

Ж. Аш и др. Датчики измерительных систем.-М.: Мир, 1992, т.2, с.380-395.

http://www.figarosensor.com