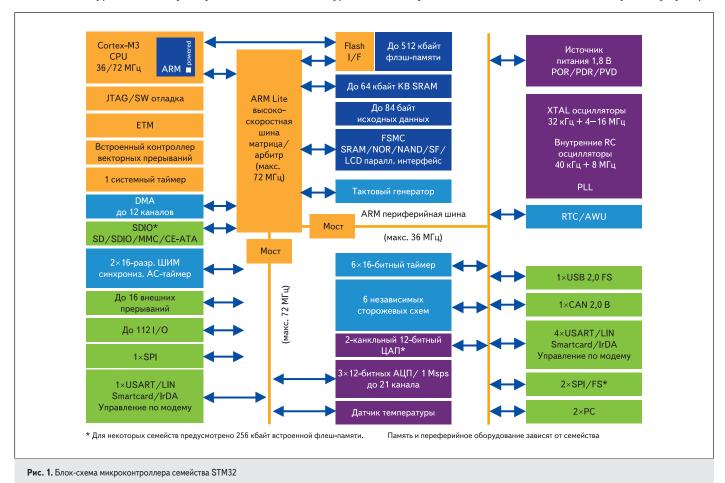
STM32 — **32-разрядные микроконтроллеры** на основе ядра ARM Cortex-M3

Евгений КРЫЛОВ info@cec-mc.ru

Фирма STMicroelectronics (STM) одной из первых приступила к серийному выпуску 32-разрядных Flash-микроконтроллеров, в основу которых было заложено ядро ARM Cortex-M3, разработанное специально для встраиваемых применений.

приборы нового семейства, получившего название STM32, предоставили разработчикам расширенные возможности архитектуры Cortex-M3, при ведущем в отрасли малом энергопотреблении.

Низкое энергопотребление микроконтроллеров семейства STM32 в рабочем режиме в еще большей мере снижается за счет использования ряда режимов энергосбережения, что способствует оптимизации рабочих характеристик таких применений, как промышленное оборудование, контроллеры об-

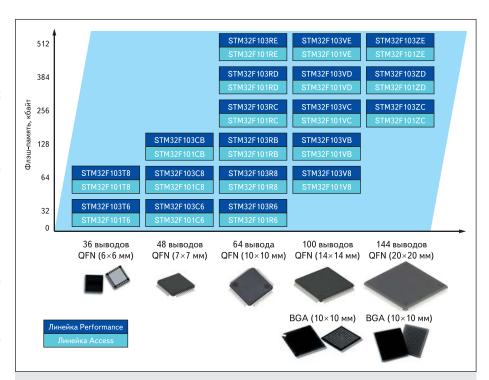

служивания зданий, медицинская аппаратура, периферия компьютеров и т. п.

Ядро процессора Cortex-M3 построено с использованием Гарвардской архитектуры с 3-уровневым конвейером, в сочетании с рядом расширенных функций, включая одноцикловый умножитель и аппаратный делитель, обеспечивающие исключительно высокую производительность в 1,25 DMIPS/МГц. Процессор Cortex-M3 работает также с новой системой команд Thumb-2, которая, в сочетании с такими функциями, как хранение не-

выровненных данных и побитовая обработка, обеспечивает 32-разрядную производительность при стоимости, эквивалентной стоимости современных 8- и 16-разрядных микроконтроллеров.

В семейство STM32 входят две линейки приборов:

 Access (F101xx): частота тактирования 36 МГц, от 32 до 128 кбайт флэш-памяти, от 6 до 16 кбайт SRAM, до 7 коммуникационных интерфейсов. Линейка Access разработана с тем, чтобы внедрить 32-разрядную


схемотехнику в критичные к стоимости применения или в 16-разрядные проекты.

• Performance (F103хх): частота тактирования 72 МГц, от 256 до 512 кбайт флэш-памяти, до 64 кбайт SRAM, контроллер статической памяти с поддержкой Compact Flash, SRAM, PSRAM, NOR и NAND памяти, с поддержкой LCD параллельного интерфейса (F103Vx). Микроконтроллеры имеют до 13 коммуникационных интерфейсов, в том числе USB и CAN. Линейка микроконтроллеров Performance ориентирована на применения, которым необходимы одновременно и повышенная производительность обработки, и экономичная работа.

В текущем году семейство STM32 значительно расширилось: добавлено еще 28 новых микроконтроллеров, включая недорогие приборы, размещенные в 36-выводных корпусах, и приборы более высокого класса, размещенные в 144-выводных корпусах.

Новые микроконтроллеры, пополнившие номенклатуру семейства, располагают увеличенным объемом (256, 384 и 512 кбайт) встроенной Flash-памяти, обеспечивающей хранение как программ, так и данных. Увеличение объема памяти предоставляет разработчикам возможность реализовать новые функции и расширить возможности существующих базовых платформ продуктов. Объем встроенной SRAM-памяти также был увеличен до 64 кбайт у 72-МГц контроллеров линейки Performance и до 48 кбайт у 36-МГц контроллеров линейки Ассеss.

Дополнительная периферия, встроенная в микроконтроллеры с Flash-памятью емкостью 256 кбайт и более, включает контроллер внешней статической памяти (Flexible

микроконтроллеры

Рис. 2. Матрица номенклатуры микроконтроллеров семейства STM32

Static-Memory Controller, FSMC), поддерживающий микросхемы NOR, NAND и Compact Flash-памяти и, кроме того, SRAM-память. FSMC-контроллер поддерживает также режимы 8080 (Intel) и 6800 (Motorola) для организации параллельного интерфейса с LCD-контроллерами.

Кроме того, новые микроконтроллеры располагают контроллером для сменных носителей памяти, включая SD (Secure Digital), SDIO (Secure Digital Input/Output) и MMC

(Multi-Media Card), которые соответствуют требованиям спецификаций MultiMediaCard System Specification 4.42 для 8-разрядных пересылок данных на частоте 48 МГц.

На рис. 1 показана блок-схема микроконтроллера семейства STM32, представляющая организацию шин и подключение к ним памяти и периферии.

Все представители семейства STM32 оснащены стандартным портом JTAG с встроенной отладочной системой.

Таблица. Характеристики 32-разрядных микроконтроллеров на основе ядра CORTEX M3																						
Тип прибора	F такт, МГц	Основной генератор такт., МГц	Встроенные RC-генераторы	Генератор частоты 32 кГц	Flash-память программ, кбайт	RAM, кбайт	DMA , каналов	АDC, количество (каналов × разрядов)	Таймеров × разрядов (IC/OC/PWM)	24-разр. счетчик обратн. счта	Прочие таймеры	USART (IrDa/1S07816)	USB	CAN	Прочие последовательные интерфейсы	Примечания	Вывод Vbat	I/О выводов (с большим током)	Диапазон рабоч. темп., °C	Режимов энергосбер.	Напряжение питания, В	Корпус
Линейка Access																						
STM32F101T6 STM32F101T8	36	4-16	8 МГц/ 32 кГц		32 64	6 10	7	1×(10×12)	2×16 (8/8/8) 3×16 (12/12/12)	+	2×WDG, RTC	2			1×SPI, 1×I ² C	Встроенные функции POR, PDR и PVD	+	26 (26)		3	2-3,6	VFQFPN 36 6×6×1,0 PITCH 0.50
STM32F101C6 STM32F101C8	36	4-16	8 МГц/ 32 кГц	+	32 64	6 10	7	1×(10×12)	2×16 (8/8/8)		2×WDG, RTC	2			1×SPI, 1×I ² C	Встроенные функции POR. PDR и PVD	+	36	35	3	2-3,6	LQFP 48 7×7×1,4 1
STM32F101CB			32 КІ Ц		128	16		, ,	3×16 (12/12/12)	+	RIC	3			2×SPI, 2×I ² C	רטא, פטא א פעל		(36)	=			LQFP 64
STM32F101R6					32	6			2×16 (8/8/8)	+ 2		2			1×SPI, 1×I ² C	_			-4085/105	3	2-3,6	10×10×1,4 1
STM32F101R8 STM32F101RB	36	4-16	8 МГц/ 32 кГц	+	64 128	10 16	7	1×(16×12)	3×16 (12/12/12)	_	2×WDG, RTC	3			2×SPI, 2×I ² C	Встроенные функции POR, PDR и PVD	+	51 (51)	-40			LOFP 100
STM32F101V8 STM32F101VB	36	4-16	8 МГц/ 32 кГц	+	64 128	10 16	7	1×(16×12)	3×16 (12/12/12)	+	2×WDG, RTC	3			2×SPI, 2×I ² C	Встроенные функции POR, PDR и PVD	+	80 (80)		3	2-3,6	14×14×1,4 1
Линейка Performance																						
STM32F103T6	72	4-16	8 МГц/ 32 кГц	+	32	10	12	2×(10×12)	3×16 (12/12/12)	+	2×WDG, RTC	1+HS	+	+	1×SPI, 1×I ² C	Встроенные функции POR, PDR и PVD, 1xHS	+	26 (26)		3	2-3,6	VFQFPN 36 6×6×1,0 PITCH 0.50
STM32F103T8			32 KI U		64	20			4×16 (16/16/18)		IXI C					USART 4,5 M6ит/c	Ш	,,	, !	3	2-3,6	LQFP 48 7×7×1.4 1
STM32F103C6			8 МГц/		32	10			3×16 (12/12/14)	┤ ↓ │	2×WDG, RTC	1+HS			1×SPI, 1×I ² C	POR PDR u PVD 1xHS	+	36 (36)	4085/105		,	,
STM32F103C8	72	4-16	32 кГц	+	64	20	12	2×(10×12)	4×16 (16/16/18)			0	+	+	2×SPI, 2×I ² C					3	2-3,6	LQFP 64 10×10×1,4 1
STM32F103CB STM32F103R6					128	20			246 /42 /42 /44			2+HS	_	_	4CDL 412C	, ,			85			
STM32F103R6	72	4-16	8 МГц/	+	32 64	10 20	12	2×(16×12)	3×16 (12/12/14)	+	2×WDG,	2+HS	+	+	1×SPI, 1×I ² C	Встроенные функции POR, PDR и PVD, 1xHS	+	51	6.			LFBGA 100 10×10×1,7
STM32F103RB	12	7 10	32 кГц	Ι΄.	128	20	12	2^(10^12)	4×16 (16/16/18)	'	RTC	21110	'	l	2×SPI, 2×I ² C	USART 4,5 Мбит/с	'	(51)	'	3	2-3,6	F10x10 0.8,
STM32F103V8			8 МГц/		64	20					2~WDC		\vdash			Встроенные функции		80				TQFP 100 14×14×1,4 1
STM32F103VB	72	4-16	32 кГц	+	128	20	12	2×(16×12)	4×16 (16/16/18)	+	2×WDG, RTC	2+HS	+	+	2×SPI, 2×I ² C	POR, PDR и PVĎ, 1xHS USART на 4,5 Мбит/с	+	(80)				ŕ

Порт I²S поддерживает режимы ведущего и ведомого, добавлена выборка аудиосигнала с частотами от 8 до 48 кГц и, кроме того, добавлены 2-канальный 12-разрядный DAC и встроенная макро-ячейка трассировки (Embedded Trace Macrocell, ETM), улучшающая возможности отладки. Введена и дополнительная стандартная периферия, включающая до пяти UART/USART (до 4,5 Мбит/с), три SPI (18 МГц) и два I²C (400 кГц) интерфейса. Такое сочетание периферийных устройств позволяет ориентировать микроконтроллеры семейства STM32 на новые рынки, которым необходимы надежная коммуникация и дополнительные возможности управления.

Новые микроконтроллеры линейки Performance с объемом памяти свыше 256 кбайт оснащены, кроме того, двумя PWM-таймерами с семью выходами и возможностью управления временем запирания (dead-time). Эти таймеры могут быть объединены с четырьмя стандартными 16-разрядными таймерами, что позволяет поддерживать до двадцати восьми PWM-сигналов. Все представители семейства оснащены 12-разрядными АЦП с частотой преобразования 1 МГц с воз-

можностью функции тройной выборки/хранения. Число каналов АЦП в микроконтроллерах линейки Access составляет 10 или 16 (один модуль АЦП), микроконтроллеры линейки Performance имеют два независимых модуля АЦП с общим числом аналоговых входов 2×10 или 2×16 .

Такой набор модулей PWM и АЦП позволяет реализовать одновременное управление сразу двумя 3-фазными бесколлекторными пвигателями.

Все микроконтроллеры линейки Performance имеют в своем составе контроллеры коммуникационных интерфейсов последовательной передачи по стандарту CAN и USB (12 Мбит/с).

Новые микроконтроллеры семейства STM32 поставляются в корпусах LQFP64, LQFP/BGA100 и LQFP144/BGA144. Версии с объемом флэш-памяти в 32 или 64 кбайт размещены в новом компактном корпусе OFN36 (6×6 мм).

На данный момент номенклатура микроконтроллеров семейства STM32 (рис. 2), в целом, состоит из 46 устройств линеек Access и Performance. Основные характеристики этих микроконтроллеров представлены в таблице.

Среда разработки для микроконтроллеров семейства STM32 фирмы STMicroelectronics позволяет строить применения на стандартном ядре с учетом мощного набора программных и аппаратных средств. Другими популярными интегрированными средами проектирования, предоставляемыми третьими разработчиками, являются uVision3 (Keil), EWARM (IAR), RAISONANCE и др.

Фирма STMicroelectronics (www.st.com) для поддержки своей продукции предоставляет разработчикам бесплатный набор драйверов всех стандартных блоков и УВВ, от портов ввода/вывода и таймеров до блоков САN, Г°С, внешней шины, SPI, UART, АЦП и др., а также бесплатные библиотеки для векторного управления электродвигателями, в том числе асинхронными с короткозамкнутым ротором.

В состав средств поддержки разработчиков входит новая оценочная плата от фирмы ST, поддерживающая самые последние модели и стартовые наборы от третьих поставщиков — IAR, KEIL, HITEX, RAISONANCE.