DC/DC-преобразователи компании SynQor

для питания радиоаппаратуры

Михаил НИКИТИН

nmn@ranet.ru

В статье представлены основные технические характеристики и конструктивные особенности DC/DC-преобразователей компании SynQor для промышленной и военной радиоаппаратуры. Дополнительно затрагиваются вопросы, связанные с организацией распределенной системы электропитания для снижения массо-габаритных показателей и повышения эффективности энергопотребления.

Введение

Требования, предъявляемые к радиоаппаратуре, которыми руководствовались разработчики 90-х годов прошлого века, с недавнего времени подверглись существенному пересмотру и изменениям. Так, в наши дни уделяется особое внимание не только функциональным характеристикам, но и массогабаритным показателям и оптимизации расхода электроэнергии, что крайне существенно при работе от аккумуляторов. В свою очередь, подверглись пересмотру и подходы к проектированию систем питания для радиоаппаратуры нового поколения как гражданского, так и военного применений.

Радиоаппаратура имеет множество классификаций, которые, как правило, отражают область применения и косвенно массогабаритные параметры. Так, можно выделить аппаратуру радиосвязи сухопутного наземного, морского, авиационного и космического применений, и это далеко не полный перечень классификаторов. По требованиям устойчивости к воздействию радиации и надежности особое положение занимает радиоаппаратура космического применения. При этом

Регуляторы напряжения нагрузка 1 AC-DC DC-DC 2.5 B нагрузка 3 5 B нагрузка 4 0,8 B нагрузка 5 3,3 B нагрузка 1,2 B DC-DC 2.5 B нагрузка 5 B Уровень 1 Преобразование Уровень 2 переменного Понижение напряжения Уровень 3 входного постоянного в постоянное Регулирование напряжения напряжения на и обеспечение промежуточной шине. гальванической непосредственное изоляции питание нагрузки

Рис. 1. Пример структурной схемы питания с архитектурой ІВА

прочую радиоаппаратуру можно условно разделить на две основные группы: неперемещаемая и подвижная.

Неперемещаемая радиоаппаратура априори подразумевает наличие приемопередающих устройств большей мощности, в сравнении с подвижной, но к ней предъявляются менее жесткие требования по массогабаритным параметрам, при этом питание осуществляется от бытовой или промышленной сети энергоснабжения. Неперемещаемую радиоаппаратуру, как правило, устанавливают внутри помещений, в отличие от подвижной, поэтому требования устойчивости к климатическим воздействиям существенно мягче. Однако в связи с повышением мобильности связи в настоящее время ключевая роль принадлежит подвижной радиоаппаратуре.

Подвижную радиоаппаратуру можно разделить на три основные категории: стационарная возимая, стационарная носимая и мобильная. Системы питания для каждой из этих категорий имеют ряд особенностей, так, для мобильной характерно использование энергии аккумуляторов, а для прочих — питание от бортовой сети (12/24/50/75/110 В постоянного тока). Наиболее распространенной является бортовая питающая сеть с номинальным напряжением 12 и 24 В постоянного тока, но стоит отметить, что для некоторых функциональных модулей радиоаппаратуры требуется напряжение 50 или 75 В [1-3].

Как было отмечено выше, в современных наземных транспортных средствах напряжение бортовой питающей сети составляет 12 и 24 В (для

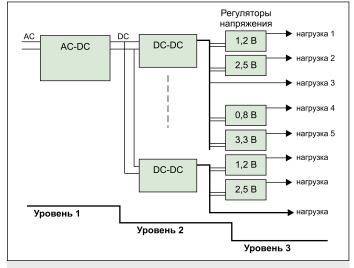
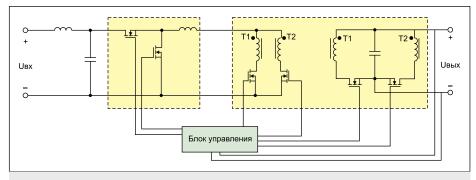


Рис. 2. Пример структурной схемы распределенной системы питания

авиации эта величина равняется 27 В [4]), однако при реальных расчетах следует учитывать не номинал бортовой сети, а диапазон его изменения при запуске и работе двигателя. Например, для авиационной бортовой сети допускаются просадки напряжения не более $1\ c\ do 10\ B$ и кратковременные скачки (<5 мкс) до $50\ B$, а для сухопутной подвижной техники изменение напряжения может варьироваться от $-10\ do 30\%$ от номинала [1-4].


Вторым важным вопросом при разработке радиоэлектронной аппаратуры является выбор архитектуры питания. Разработчики могут остановить свой выбор либо на централизованной, либо на децентрализованной схемах. У каждой из них есть свои особенности, например, при требовании наличия большого числа питающих напряжений рекомендуется остановить свой выбор на децентрализованной схеме с промежуточной шиной (Intermediate Bus Architecture, IBA), что позволит существенно улучшить массогабаритные показатели, снизить потери при преобразовании энергии и стоимость конечной продукции (рис. 1) [5].

При небольшом числе необходимых номиналов питающих напряжений (2–4 ед.) и жестких требованиях по помехам разработчики чаще выбирают децентрализованную архитектуру без промежуточной шины питания, особенностью которой является использование нескольких DC/DC-преобразователей для непосредственного питания нагрузки и оконечных регуляторов напряжения (Point-Of-Load, POL). Такая архитектура (рис. 2) позволяет осуществлять питание энергоемких нагрузок непосредственно от DC/DC-преобразователя, минуя регулятор напряжения, что повышает надежность конечной продукции [5].

DC/DC-преобразователи группы InQor

Компания SynQor для промышленной и потребительской электроники с высокими требованиями по надежности серийно производит DC/DC-преобразователи группы InQor. Их особенностью является двойное преобразование напряжения (рис. 3), суть его заключается в следующем: сначала входное напряжение подается на внутренний ЕМІ-фильтр, затем понижается до некоторого базисного уровня в первичном преобразователе (Step-Down) и после этого повышается или понижается до требуемого значения во вторичном преобразователе с гальванической изоляцией. Все цепи обратной связи и управления имеют оптическую изоляцию с высокой надежностью.

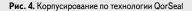
Группа InQor представлена 13 сериями, различающимися по величине входного напряжения. Для радиоаппаратуры наибольший интерес представляют серии IQ18, IQ24 и IQ32 (табл. 1). Стоит отметить, что все DC/DC-преобразователи выполнены

источники питания

Рис. 3. Обобщенная структурная схема DC/DC-преобразователей SynQor

в стандартных герметизированных компаундом корпусах с типовым расположением контактов (в отличие от многих других производителей) и рассчитаны на эксплуатацию при температуре от -40 до +100 °C без потери мощности. Для снижения электромагнитных помех при преобразовании энергии используется фиксированная частота преобразования (для разных серий варьируется в диапазоне 240-350 к Γ ц), в свою очередь пульсации

не превышают 1% от номинала выходного напряжения.


DC/DC-преобразователи группы InQor имеют широкие функциональные возможности. такие как:

- дистанционное включение/отключение;
- параллельное подключение к нагрузке;
- регулирование выходного напряжения в диапазоне от –20 до 10% относительно номинала;

Таблица 1. Основные технические характеристики DC/DC-преобразователей групп InQor и MilQor

Серия	Диапазон входного напряже- ния, В	Выходное напряжение*, В	Максимальная выходная мощность, Вт	Частота преобра- зования, кГц	Диапазон температур эксплуата- ции, °С	кпд	Примечание	Тип корпуса	
InQor преобразователи									
IQ12	9-22	1,2/1,5/1,8/2,5/3,3/5/7/ 12/15/24/28/30/40/48	24-180		92 95 95 95		HB/QB/SB		
IQ24	18-36	1,2/1,5/1,8/2,5/3,3/5/7/ 12/15/24/28/30/40/48/50	24-500	240-350		95	Внешняя	HB/QB/SB	
IQ48	34-75		24-500					HB/QB/SB	
IQ72	42-110	1,8/3,3/5/7/12/15/24/28/ 30/40/48	58-250					HB/QB	
IQ1B	66-160		45-250			93		HB/QB	
IQ4H	180-425	1,8/3,3/5/7/12/15/24/28/ 48/72/96	54-600	450-550	-40+100	-40+100 ⁹⁰ вклю	синхронизация; включение/	FB/HB/QB	
IQ18	9-36	1,2/1,5/1,8/2,5/3,3/5/7/ 12/15/24/28/30/40/48	24-180	240-350		92	выключение подачей ТТЛ-сигнала	HB/QB/SB	
IQ36	18-75		24-220			93		HB/QB/SB	
IQ70	34-135	1,8/3,3/5/7/12/15/24/28/ 30/40/48	45-240			93		HB/QB	
IQ32	9-75		45-160			91		HB/QB	
IQ64	18-135		45-200			91		HB/QB	
IQ90	34-160		45-228	ļ		94		HB/QB	
IQ68	12-150	5/12/24/48	26-53		90		HB/QB		
Ні-Rel преобразователи									
MQFL-28	16-40	1,5/1,8/2,5/3,3/5/6/7,5/ 9/12/15/28/±5/±12/±15	60-120			0,91	Внешняя синхронизация; выравнивание токовой нагрузки; включение подачей ТТЛ-сигнала	FL/ME	
MQFL-28E	16-70		60-120	ļ		0,9		FL/ME	
MQFL-28V	16-40 16-70		60-102			0,9		FL/ME	
MQFL-28VE MQFL-270	155-400		60-100 60-120			0,9		FL/ME FL/ME	
MQFL-270L	65-350		60-120			0.86		FL/ME FL/ME	
MQHL-270L	16-40		30-50	500-600	-55 +125	0,80	Внешняя - синхронизация; включение/ выключение подачей ТТЛ-сигнала	HL/HE	
MQHL-28E	16-70		30-50	-		0.9		HL/HE	
MQHR-28	16-40		15-25			0,9		HR/HE	
MQHR-28E	16-70		15-25			0.9		HR/HE	
MQBL-28	16-40		12-20			0,91		BL	
MQBL-28E	16-70		12-20			0.9		BL	
		N	fil-COTS преобраз	ователи		-,-			
MCOTS-28	16-40	1,2/1,5/1,8/2,5/3,3/5/7/7,5/ 12/15/24/28/40/48/50	30-510	470-490		0,95		HB/QB/SB	
MCOTS-28E	16-70	1,8/3,3/5/7,5/12/15/24/ 28/40/48/50	108-400	-	0,95 0,95 0,95 0,95 0,95 0,89	0,95	Включение/ выключение подачей	HB/QB	
MCOTS-28V	9-40	1,8/3,3/5/7/7,5/12/15/24/ 28/30/40/48/50	63-252	260-290		0,95		HB/QB	
MCOTS-28VE	9-70	1,8/3,3/5/7/7,5/12/15/24/ 28/30/40/48/50	83-252	240-280		ТТЛ-сигнала	HB/QB		
MCOTS-48	34-75	1,2/1,5/1,8/2,5/3,3/5/7/7,5/ 12/15/24/28/40/48/50	30-600	250			HB/QB/SB		
MCOTS-270	155-425	1,8/2,5/3,3/5/12/ 15/24/28/48	54-600	485-615		Внешняя синхронизация; включение подачей ТТЛ-сигнала	FB/HB/QB		

Примечание: * Значение выходного напряжения выбирается из ряда.

BL PACKAGE HL/HR/HE PACKAGE FL/ME PACKAGE SIXTEENTH **BRICK** BRICK **BRICK**

Рис. 5. Конструкция DC/DC-преобразователей MilQor

- внешняя синхронизация;
- дополнительный канал выходного напряжения для системы управления;
- контроль выходного напряжения на нагрузке с корректировкой потерь на проводах.

DC/DC-преобразователи группы MilQor

Для радиоаппаратуры транспорта и наземной военной техники компания SynQor предлагает использовать DC/DC-преобразователи подгруппы Mil-COTS группы MilQor. Mil-COTS представлена восемью сериями, по аналогии с InQor. Для применения в радиоаппаратуре наиболее интересны серии MCOTS-28E и MCOTS-28VE (табл. 1). DC/DCпреобразователи Mil-COTS являются очень схожими с InQor: используют схему с двойным преобразованием напряжения, содержат оптическую изоляцию цепей обратной связи и управления, идентичные функциональные возможности, электрические параметры и конструктивные особенности. Но имеют и ряд отличий, в первую очередь диапазон рабочей температуры от -55 до +100 °C, и соответствуют Mil-STD-883F в части стойкости к климатическим воздействиям [7].

Группа MilQor представлена также изделиями подгруппы Hi-Rel, предназначенными для применения в авиации. Особенностью таких изделий является расширенный диапазон температур эксплуатации от -55 до +125 °C, повышенная устойчивость к вибрациям, перепадам давления и температуры, а также соответствие требованиям американских стандартов, аналогичных ГОСТ 19705-89.

Конструктивно DC/DC-преобразователи Hi-Rel существенно отличаются от рассмотренных выше и имеют больше сходства с гибридными преобразователями, но изготовлены по инновационной технологии корпусирования QorSeal.

Основу конструкции полноразмерного Hi-Rel преобразователя, выполненного

по технологии QorSeal, составляет цельнометаллический корпус из алюминия с защитным никелевым покрытием, обеспечивающим защиту от атмосферных воздействий, слабых органических кислот, растворов солей и щелочей (рис. 4). Для еще большего защитного эффекта на никелевое покрытие гальванически наносится тонкий слой золота. Соответственно, внешне Mil-COTS и Hi-Rel DC/DC-преобразователи также имеют существенные различия (рис. 5) [8].

На рис. 4 показано, что печатная плата Ні-Rel преобразователя ($\Pi\Pi$) не имеет непосредственного контакта с цельнометаллическим корпусом, поскольку ее крепление осуществляется за счет боковых П-образных планок, выполненных из полимерного материала. После размещения ПП в корпусе сборка фиксируется четырьмя шплинтами. Стоит отметить, что боковые П-образные планки также обеспечивают фиксацию выводных электрических контактов и выполняют функцию боковых стенок Hi-Rel преобразователя.

Технология QorSeal предусматривает процедуру герметизации Hi-Rel преобразователей, которая производится путем заполнения теплопроводным компаундом внутренней полости. Компаунд подается под небольшим давлением через технологическое отверстие в корпусе, обеспечивая герметизацию и отвод тепла от компонентов. После затвердевания вытекший компаунд удаляется, а поверхность Hi-Rel преобразователя полируется с последующим нанесением на нее маркировки [8].

Особо стоит упомянуть о самой печатной плате. Специалисты SynQor отказались от электролитических и танталовых конденсаторов в Hi-Rel преобразователях, а силовые полупроводниковые компоненты использовали исключительно в компактных корпусах. С одной стороны, это позволило добиться устойчивой работы в широком диапазоне температур эксплуатации, а с другой — обеспечило снижение габаритов.

Таблица 2. Размеры корпусов DC/DC-преобразователей SynQor

Обозначение	Размер, дюймы				
Full Brick (FB)	2,48×4,69				
Half Brick (HB)	2,3×2,4				
Quarter Brick (QB)	1,45×2,3				
Eighth Brick (EB)	0,9×2,3				
Sixteenth Brick (SB)	1,04×1,44				
Full Size X/Y Case (FL/ME)	3×1,5/2,5×2				
Half Size X/Y Case (HL/HR/HE)	1,88×1,5/1,38×2				

Однако использование силовых полупроводниковых компонентов в компактных корпусах обозначило проблему локального перегрева, а применение исключительно керамических конденсаторов привело к значительному увеличению числа компонентов (табл. 2). Все это подтолкнуло к использованию многослойной ПП, которая позволила увеличить плотность монтажа электронных компонентов, а с помощью дополнительных металлизированных слоев решить проблему локального перегрева за счет перераспределения тепловой энергии, при этом собственно съем тепла производится за счет теплопроводного компаунда [7].

Заключение

При проектировании радиоэлектронной аппаратуры инженерам приходится решать множество технических задач, в числе которых обеспечение электромагнитной совместимости, построение архитектуры питания с учетом таких факторов, как область применения, рабочее напряжение, характер нагрузки, количество номиналов выходного напряжения, требования к изоляции выходных и сигнальных цепей и пр., а также снижение массогабаритных показателей. Существенно упростить решение поставленных задач может применение DC/DC-преобразователей и EMI-фильтров питания компании SynQor, которые выпускаются для индустриальных приложений, транспорта, военной и авиационной техники.

Литература

- 1. ГОСТ 16019-2001. Аппаратура подвижной сухопутной радиосвязи.
- 2. ГОСТ 22579-86. Радиостанции с однополюсной модуляцией сухопутной подвижной службы.
- 3. ГОСТ 12252-86. Радиостанции с угловой модуляцией сухопутной подвижной службы.
- 4. ГОСТ 197705-89. Системы электроснабжения вертолетов и самолетов.
- 5. Тузов А., Никитин М. Системы питания с IBA или без? // Силовая электроника. 2010. № 5.
- 6. Тузов А., Никитин М. Высокоэффективные DC/DC-преобразователи компании SynQor // Электроника: Наука, Технология, Бизнес. 2010. & 6.
- 7. Никитин М. Высоконадежные DC/DC-преобразователи для применения в военной и транспортной технике // Компоненты и технологии. 2011. № 1.
- 8. Техническая документация по продукции SynQor www.synqor.com