Новое семейство микроконтроллеров C8051F36x фирмы Silicon Laboratories

Олег НИКОЛАЙЧУК onic@inbox.ru

В статье рассматриваются особенности архитектуры и основные параметры семейства быстродействующих микроконтроллеров C8051F36x, выпускаемых компанией Silicon Laboratories.

Вфеврале 2007 года фирма Silicon Laboratories (SiLabs), объявила о начале производства семейства, состоящего из 10 быстродействующих микроконтроллеров С8051F36x [1]. Основные параметры микроконтроллеров семейства приведены в таблице 1. Структура базового микроконтроллера С8051F360 показана на рис. 1.

Рассмотрим основные характеристики микроконтроллеров этого семейства.

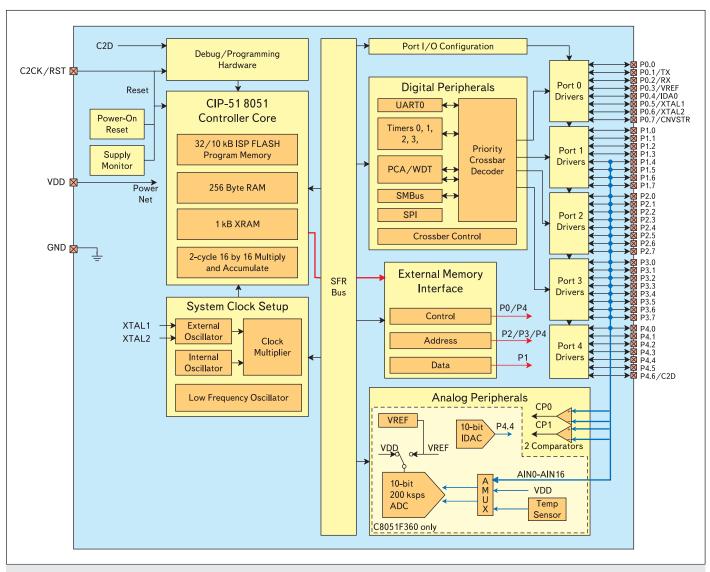
Все микроконтроллеры С8051F36х выполнены на базе модифицированного высокопроизводительного ядра CIP-51 фирмы SiLabs, полностью совместимого по набору инструкций со стандартным MCS-51 ядром. Несомненно, важнейшим достоинством ядра СІР-51 является усовершенствованная конвейерная архитектура, которая позволяет значительно увеличить произволительность по сравнению со стандартной х51-совместимой архитектурой. Модернизированное ядро СІР-51 выполняет 70% инструкций за один или два машинных шикла и вообще не имеет инструкций, выполняющихся более чем за восемь машинных циклов. Как известно, производительность микроконтроллера прямо пропорциональна тактовой частоте, на которой работает ядро. Поэтому ядро дополнено развитой встроенной системой из двух тактовых генераторов и вспомогательных узлов. Первый высокоэффективный тактовый генератор в процессе производства калибруется на частоте $24,5\pm2\%$ МГц для эффективной работы UART на стандартных скоростях. Этот же генератор может работать и с внешним кварцевым резонатором, или с внешним конденсатором, или с внешним генератором. Второй тактовый генератор может работать на одной из четырех низких частот — 80,40,20 или 10 кГц. К выходу одного из генератором может подключаться аппаратный умножитель частоты (PLL), обеспечивающий синтез выходной частоты до 100 МГц.

Конечно же, обеспечивается возможность оперативного программного переключения генераторов «на лету». Аппаратный делитель частоты и коммутатор обеспечивают программный выбор тактовой частоты в диапазоне от 10 кГц до 100 МГц. При этом может развиваться пиковая (предельная) производительность до 100 MIPS (миллионов инструкций в секунду). Кроме этого, в состав ядра входит аппаратный умножитель 16×16 (МАС), обеспечивающий аппаратное умножение двух 16-битных двоичных чисел за два такта. Ядро дополнено эффективным двухуровневым обработчиком прерываний, обрабатывающим до 12 внутренних и 2 внешних источников прерываний.

Микроконтроллеры семейства C8051F36x оснащаются 32 кбайтами (F360–F367) или

16 кбайтами (F368/F369) Flash-памяти программ и данных, которую можно модифицировать непосредственно в ходе выполнения рабочей программы. Отличием от других семейств микроконтроллеров фирмы SiLabs является размер сектора — 1024 байта (а не 512 байтов).

Расширенная оперативная память имеет объем 1024 байта + стандартная оперативная память 256 байтов.


Микроконтроллеры имеют от 39 до 24 линий ввода/вывода, совместимых с питанием +5 В

В состав цифровой периферии входят интерфейс SMBus (совместимый с I²C) и расширенные интерфейсы SPI и UART. Кроме этого имеются четыре 16-разрядных таймеров-счетчиков общего назначения, программируемый 16-разрядный счетчик (PCA) с шестью модулями сравнения/захвата и возможностью организации охранного таймера (WDT) и таймера реального времени (RTC). Кроме того, два микроконтроллера F360 и F363 имеют аппаратный интерфейс внешней памяти (EMI).

В состав аналоговой периферии входит 10-разрядный аналого-цифровой преобразователь (ADC0) с повышенным до 200 квыб/с быстродействием с аналоговым мультиплексором, позволяющим коммутировать аналоговые сигналы на любые линии ввода/вывода (до 21 входа). В состав этого узла также традиционно входит «оконный» компаратор

Таблица 1. Основные параметры микроконтроллеров семейства C8051F36x

Тип	Пиковая производительность, МIPS	Объем Flash-памяти, кбайт	Встроенная оперативная память, кбайт	Двухцикловый умножитель 16×16	Калиброванный встроенный тактовый генератор на 24,5 МГц	Встроенный тактовый генератор 80 кГц	Интерфейс внешней памяти EMI	Интерфейс SMBus/I ² C	Расширенный интерфейс SPI	Интерфейс UART	Таймеры 16-битные	Программируемый массив-счетчик РСА	Линии портов ввода/вывода	Аналого-цифровой преобразователь 10 бит 200 ksps	Цифро-аналоговые преобразователи с токовым выходом 10 бит	Встроенный источник опорного напряжения	Температурный датчик	Аналоговый компаратор	Корпус
C8051F360	100	32	1	+	+	+	+	+	+	+	4	+	39	+	+	+	+	2	TQFP48
C8051F361	90/100	32	1	+	+	+	-	+	+	+	4	+	27	+	+	+	+	2	LQFP32
C8051F362	90/100	32	1	+	+	+	-	+	+	+	4	+	24	+	+	+	+	2	QFN28
C8051F363	100	32	1	+	+	+	+	+	+	+	4	+	39	_	-	_	-	2	TQFP48
C8051F364	90/100	32	1	+	+	+	-	+	+	+	4	+	27	_	_	-	-	2	LQFP32
C8051F365	90/100	32	1	+	+	+	-	+	+	+	4	+	24	_	-	_	-	2	QFN28
C8051F366	50	32	1	+	+	+	-	+	+	+	4	+	29	+	+	+	+	2	LQFP32
C8051F367	50	32	1	+	+	+	-	+	+	+	4	+	25	+	+	+	+	2	QFN28
C8051F368	50	16	1	+	+	+	-	+	+	+	4	+	29	+	+	+	+	2	LQFP32
C8051F369	50	16	1	+	+	+	_	+	+	+	4	+	25	+	+	+	+	2	QFN28

Рис. 1. Структура базового микроконтроллера C8051F360

и температурный датчик. Микроконтроллеры оснащаются также 10-разрядным цифроаналоговым преобразователем с токовым выходом и двумя аналоговыми компараторами с программируемыми петлей гистерезиса и временем срабатывания. Микроконтроллеры могут использовать в качестве источника опорного напряжения либо внутренний источник опорного напряжения 2,44 В, либо напряжение с внешнего источника, либо напряжение питания.

Микроконтроллеры семейства C8051F36х имеют широкий диапазон напряжений питания (от 2,7–3,6 В), однако от напряжения питания зависит максимально возможная тактовая частота. Так, в ряде контроллеров (табл. 1) пиковая производительность 100 MIPS достигается только при напряжении питания от 3,0 до 3,6 В, а при более низких напряжениях гарантируется пиковая производительность до 90 MIPS. Максимальный ток потребления — не более 8 мА.

Новое семейство микроконтроллеров C8051F36х имеет развитый интерфейс про-

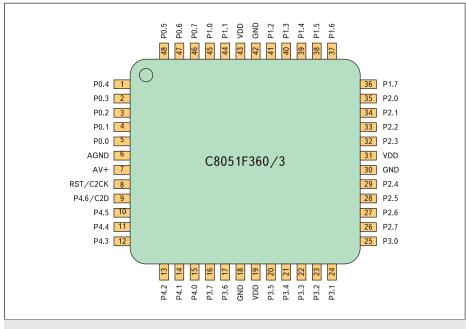
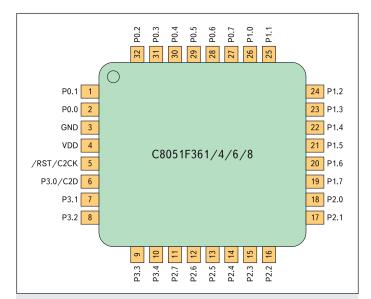



Рис. 2. Расположение выводов микроконтроллеров С8051F360 и С8051F363 в корпусах TQFP48

микроконтроллеры

118

Рис. 3. Расположение выводов микроконтроллеров C8051F361, F364, F366 и F368 в корпусах LQFP32

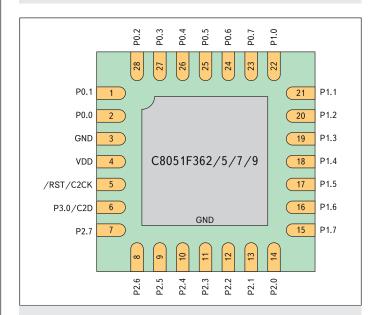


Рис. 4. Расположение выводов микроконтроллеров C8051F362, F365, F367 и F369 в корпусах QFN28

Таблица 2. Назначение выводов микроконтроллеров семейства C8051F36x

	19,31,43 18,30,42 6 7 8	4 3 - - 5	4 3 - - 5		Входы напряжения питания Цифровая земля (общий) Аналоговая земля Входы питания аналоговых узлов от +2,7 до 3,6 В
AGND AV+ RST/ C2CK P4.6/	6 7 8	-	-		Аналоговая земля Входы питания аналоговых узлов
AV+ RST/ C2CK P4.6/	7 8	-	-		Входы питания аналоговых узлов
RST/ C2CK P4.6/	8	5	5		
C2CK P4.6/		5	5		
P4.6/	9			DI/O	Вход сброса, а также выход со стоком встроенного монитора
	9			DI/O	Тактовая линия интерфейса программирования C2
C2D		_	_	DI/O или AIN	Линия ввода/вывода Р4.6
				DI/O	Двунаправленная линия данных интерфейса программирования C2
P3.0/	-	6	6	DI/O или AIN	Линия ввода/вывода Р3.0
C2D				DI/O	Двунаправленная линия данных интерфейса программирования C2
P0.0	5	2	2	DI/O или AIN	Линия ввода/вывода Р0.0
P0.1	4	1	1	DI/O или AIN	Линия ввода/вывода Р0.1
P0.2	3	32	28	DI/O или AIN	Линия ввода/вывода Р0.2
P0.3	2	31	27	DI/O или AIN	Линия ввода/вывода Р0.3
P0.4	1	30	26	DI/O или AIN	Линия ввода/вывода Р0.4
P0.5	48	29	25	DI/O или AIN	Линия ввода/вывода Р0.5
P0.6	47	28	24	DI/O или AIN	Линия ввода/вывода Р0.6
P0.7	48	27	23	DI/O или AIN	Линия ввода/вывода Р0.7
P1.0	45	26	22	DI/O или AIN	Линия ввода/вывода Р1.0
P1.1	44	25	21	DI/O или AIN	Линия ввода/вывода Р1.1
P1.2	41	24	20	DI/O или AIN	Линия ввода/вывода Р1.2
P1.3	40	23	19	DI/O или AIN	Линия ввода/вывода Р1.3
P1.4	39	22	18	DI/O или AIN	Линия ввода/вывода Р1.4
P1.5	38	21	17	D I / О или AIN	Линия ввода/вывода Р1.5
P1.6	37	20	16	D I / О или AIN	Линия ввода/вывода Р1.6
P1.7	36	19	15	DI/O или AIN	Линия ввода/вывода Р1.7
P2.0	35	18	14	D I / О или AIN	Линия ввода/вывода Р2.0
P2.1	34	17	13	D I / О или AIN	Линия ввода/вывода Р2.1
P2.2	33	16	12	D I / О или AIN	Линия ввода/вывода Р2.2
P2.3	32	15	11	D I / О или AIN	Линия ввода/вывода Р2.3
P2.4	29	14	10	D I / О или AIN	Линия ввода/вывода Р2.4
P2.5	28	13	9	DI/O или AIN	Линия ввода/вывода Р2.5
P2.6	27	12	8	DI/O или AIN	Линия ввода/вывода Р2.6
P2.7	26	11	7	DI/O или AIN	Линия ввода/вывода Р2.7
P3.0	25	-	_	DI/O или AIN	Линия ввода/вывода Р3.0
P3.1	24	7	-	DI/O или AIN	Линия ввода/вывода РЗ.1
P3.2	23	8	_	DI/O или AIN	Линия ввода/вывода Р3.2
P3.3	22	9	-	DI/O или AIN	Линия ввода/вывода РЗ.3
P3.4	21	10	-	DI/O или AIN	Линия ввода/вывода Р3.4
P3.5	20	-	-	DI/O или AIN	Линия ввода/вывода Р3.5
P3.6	17	_	-	DI/O или AIN	Линия ввода/вывода Р3.6
P3.7	16	-	-	DI/O или AIN	Линия ввода/вывода Р3.7
P4.0	15	-	-	DI/O или AIN	Линия ввода/вывода Р4.0
P4.1	14	-	-	DI/O	Линия ввода/вывода Р4.1
P4.2	13	-	-	DI/O	Линия ввода/вывода Р4.2
P4.3	12	-	-	DI/O	Линия ввода/вывода Р4.3
P4.4	11	-	-	DI/O	Линия ввода/вывода Р4.4
P4.5	10	-	-	DI/O	Линия ввода/вывода Р4.5

граммирования и отладки С2 (модифицированный JTAG), который поддерживается фирменной оболочкой Silicon Labs IDE [2] и другими программными продуктами, например, отладчиком фирмы Keil — µVision [3] или Flash-программатором [4]. Кроме того, выпускается ряд демонстрационных комплектов для ускоренного изучения нового семейства, например, комплект C8051F360DK [5] или USB ToolStick [6].

Рабочий диапазон температур нового семейства — от -40 до +85 °C.

Микроконтроллеры выпускаются в корпусах трех типов — 48-выводном ТQFP, 32-выводном LQFP и 28-выводном QFN (раньше применялось название MLN28).

Отметим, что микроконтроллеры F361, F364, F366, F368 повыводно совместимы с микроконтроллером C8051F310, а микроконтроллеры F362, F365, F367, F369 — с C8051F311. Это обстоятельство позволяет легко молифицировать устаревшие изделия, выполненные на микроконтроллерах серии C8051F31x.

Базовым микроконтроллером семейства является C8051F360, он имеет полный комплект периферии. Микроконтроллер C8051F363 отличается от базового тем, что в нем отсутствует аналоговая периферия. Только эти два микроконтроллера (F360 и F363) из всего семейства имеют аппаратный интерфейс внешней памяти (ЕМІ). Расположение выводов микроконтроллеров C8051F360 и C8051F363 в корпусах TQFP48 представлено на рис. 2.

Четыре других микроконтроллера C8051F361, F364, F366 и F368 выпускаются в корпусах LQFP32 (рис. 3), имеющих на 16 выводов меньше, причем микроконтроллер F361 отличается от базового F360 только меньшим количеством линий ввода/вывода, F366 имеет пониженную производительность (50 MIPS), F368, кроме того, имеет уменьшенный до 16 кбайт объем Flash-памяти, а микроконтроллер F364 не имеет аналоговой периферии (табл. 1).

Остальные четыре микроконтроллера C8051F362, F365, F367 и F369 выпускаются в корпусах QFT28 (рис. 4), имеющих еще на 4 вывода меньше. Микроконтроллер F362 отличается от базового F360 только меньшим количеством линий ввода/вывода, F365 не имеет аналоговой периферии, F367 имеет полную периферию, но пониженную до 50 MIPS пиковую производительность, а микроконтроллер F369 имеет еще и сниженный объем Flash-памяти.

Основные особенности нового семейства

Высокая оснащенность новыми периферийными узлами и необходимость их гибкой настройки привели к тому, что количество регистров специальных функций SFR (Special Function Registers) превысило максимальный объем одностраничного набора из 128 регистров. Поэтому новый микроконтроллер имеет двухстраничный комплект SFR-регистров (табл. 3).

Карта источников прерывания нового семейства микроконтроллеров показана в таблице 4.

Новые интересные возможности имеют два порта ввода/вывода — Р0 и Р1. В их структуру введены два дополнительных SFR-регистра: регистра сравнения РхМАТ (Port x Match Register) и регистр маски РхМАЅК (Port x Mask Register). При возникновении ситуации, когда (Рх & РхМАЅК) не равны (РхМАТ & РхМАЅК), для портов 0 и 1 возникает событие, которое может служить источником прерывания. Это событие может, например, использоваться для вывода микроконтроллера из режима SUSPEND. Узлы интерфейсов SMBus, SPI и UART практически не отличаются от аналогичных узлов других семейств микроконтроллеров фирмы SiLabs.

В заключение отметим, что новое семейство C8051F36х содержит мощные микроконтроллеры, которые, несомненно, понравятся разработчикам.

Литература

- http://www.silabs.com/public/documents/ tpub_doc/dsheet/Microcontrollers/ Small_Form_Factor/en/C8051F36x.pdf
- 2. http://www.silabs.com/public/documents/ software_doc/othersoftware/Microcontrollers/ en/mcu_WebReadme.txt
- 3. http://www.silabs.com/tgwWebApp/public/ web_content/products/Microcontrollers/ en/mcu_keildriver.htm
- 4. http://www.silabs.com/public/documents/ software_doc/othersoftware/Microcontrollers/ en/FLASHUtil_rel_notes.txt

Таблица 3. Комплект SFR-регистров

Адрес	Номер SFR-страницы	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)	
F8	0	SPI0CN	PCA0L	PCA0H	PCA0CPL0	PCA0CPH0	PCA0CPL4	PCA0CPH4	VDM0CN	
F0	0 F	В	MAC0BL P0MDIN	MAC0BH P1MDIN	P0MAT P2MDIN	P0MASK P3MDIN	PCA0CPL5	PCA0CPH5	EMI0TC	
E8	0	ADC0CN	PCA0CPL1	PCA0CPH1	PCA0CPL2	PCA0CPH2	PCA0CPL3	PCA0CPH3	RSTSRC	
E0	0 F	ACC	P1MAT XBR0	P1MASK XBR1		IT01CF —	SFR0CN	EIE1	EIE2	
D8	0	PCA0CN	PCA0MD	PCA0CPM0	PCA0CPM1	PCA0CPM2	PCA0CPM3	PCA0CPM4	PCA0CPM5	
D0	0 F	PSW	REF0CN	MAC0ACC0 CCH0LC	MAC0ACC1 CCH0MA	MAC0ACC2 P0SKIP	MAC0ACC3 P1SKIP	MAC0OVR P2SKIP	MAC0CF P3SKIP	
C8	0 F	TMR2CN	CCH0TN	TMR2RLL	TMR2RLH	TMR2L	TMR2H	– EIP1	MAC0STA EIP2	
C0	0 F	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADC0LTL	ADC0LTH	- EMI0CF	
В8	0 F	IP	IDA0CN	AMX0N	AMX0P	ADC0CF	ADC0L	ADC0H	OSCICL	
В0	0 F	P3	P2MAT PLL0MUL	P2MASK PLL0FLT	- PLL0CN		P4	FLSCL OSCXSCN	FLKEY OSCICN	
A8	0 F	IE	- PLL0DIV	EMI0CN		- FLSTAT	OSCLCN	MAC0RNDL P4MDOUT	MAC0RNDH P3MDOUT	
A0	0 F	P2	SPI0CFG	SPI0CKR	SPI0DAT	MAC0AL P0MDOUT	MAC0AH P1MDOUT	P2MDOUT	SFRPAGE	
98	0	SCON0	SBUF0	CPT1CN	CPT0CN	CPT1MD	CPT0MD	CPT1MX	CPT0MX	
90	0	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	IDA0L	IDA0H	
88	0 F	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	PSCTL CLKSEL	
80	0 F	P0	SP	DPL	DPH	CCH0CN	SFRNEXT	SFRLAST	PCON	
Адрес	Номер SFR-страницы	Бит-адре- суемые регистры	Стандартно адресуемые SFR-регистры с учетом адреса страницы SFRPAGE							

Таблица 4. Карта источников прерывания

Источник прерывания	Название	Вектор	Приоритет	Бит адресуемый	Обнуляется аппаратно
Аппаратный сброс	RST	0x0000	Высший	-	-
Внешнее прерывание 0	INTO/	0x0003	0	+	+
Переполнение таймера 0	T00VR	0x000B	1	+	+
Внешнее прерывание 1	INT1/	0x0013	2	+	+
Переполнение таймера 1	T10VR	0x001B	3	+	+
Порт UART0	UART0	0x0023	4	+	-
Переполнение таймера 2	T2OVR	0x002B	5	+	_
Интерфейс SPI0	SPI0	0x0033	6	+	-
Интерфейс SMBus/I ² C	SMB0	0x003B	7	+	-
Резерв	-	0x0043	8	-	-
Окно ADC0	ADC0W	0x004B	9	+	_
Конец преобразования ADC0	ADC0E	0x0053	10	+	-
Интерфейс РСА	PCA0	0x005B	11	+	-
Компаратор 0	CP0	0x0063	12	-	-
Компаратор 1	CP1	0x006B	13	-	-
Переполнение таймера 3	T3OVR	0x0073	14	-	-
Резерв	-	0x007B	15	-	-
Прерывание сравнения	MAT0	0x0083	16	-	-

- http://www.silabs.com/tgwWebApp/public/ web_content/products/Microcontrollers/ Small_Form_Factor/en/C8051F360DK.htm
- 6. http://www.silabs.com/tgwWebApp/public/ web_content/products/Microcontrollers/ en/USBToolStick.htm