
Микросхема приемо-передатчика интерфейса CAN

Основные характеристики микросхемы:

- Соответствует стандарту ISO 11898-2
- Напряжение питания от 4,5 В до 5,5 В
- Защита выходов передатчика ±40 В от короткого замыкания и перегрева для применения в 12/24 В автомобильных и промышленных системах управления
- Быстродействующий дифференциальный приемник с диапазоном входного синфазного напряжения от минус 10 В до 10 В
- Четыре режима работы:
 - Нормальный режим, максимальная скорость передачи данных до 1 Мбит/с
 - Режим контроля скорости нарастания/спада выходного дифференциального напряжения передатчика для улучшения электромагнитной совместимости, скорость передачи данных от 40 Кбит/с до 500 Кбит/с
 - Режим «ожидание» с пониженным потреблением
 - Режим «выключено»
- Входы TXD, SHDN и /SHDN совместимы с 3,3 В логическими уровнями
- Рабочий диапазон температур

ТП – технологическая перемычка XX – неделя выпуска YY – год выпуска

Обозначение	Диапазон		
5559ИН14А(Б, В)У	минус 60125 °C		
К5559ИН14А(Б, В)У	минус 60125 °C		
К5559ИН14Г(Д, Е)У	070 °C		

<u>Примечание.</u> Микросхема К5559ИН14ГУ является полным аналогом К5559ИН14АУ с другим температурным диапазоном. Соответственно К5559ИН14ДУ аналогом К5559ИН14БУ, К5559ИН14ЕУ аналогом К5559ИН14ВУ.

Тип корпуса:

- 8-выводной металлокерамический корпус H02.8-1B

Общее описание и области применения микросхемы

Микросхема приемопередатчика интерфейса CAN предназначена для организации полудуплексного канала связи с максимальная скоростью передачи данных до 1 Мбит/с. Микросхема доступна в трех исполнениях: с выходом опорного напряжения UREF, с входами управления режимом «выключено» SHDN или /SHDN.

Основные области применения: Автомобильные и промышленные системы управления.

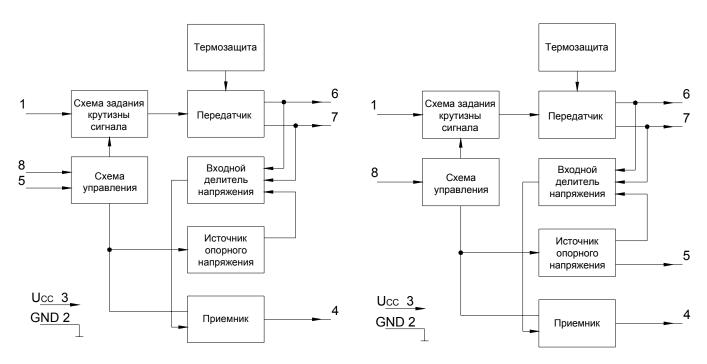

Описание выводов

Таблица 1

Вывод	Условное обозначение	Описание
1	TXD	Вход передатчика
2	GND	Общий
3	Ucc	Питание
4	RXD	Выход приемника
		Для микросхемы 5559ИН14АУ
5*	UREF	Выход источника опорного напряжения
		Для микросхемы 5559ИН14БУ
5*	SHDN	Вход управления режимом "выключено"
		Для микросхемы 5559ИН14ВУ
5*	/SHDN	Вход управления режимом "выключено"
6	CANL	Вход приемника/выход передатчика низкого уровня
7	CANH	Вход приемника/выход передатчика высокого уровня
8	RS	Вход управления режимом работы «нормальный»/«ожидание»/«контроль скорости»

<u>Примечание:</u> * в зависимости от модификации схемы назначение вывода 5 меняется

Структурная блок-схема микросхемы

Для микросхем 5559ИН14АУ

Для микросхем 5559ИН14БУ, 5559ИН14ВУ

Рисунок 1. Структурная блок-схема

<u>Примечание</u>

Все элементы схемы имеют электрическую связь с соответствующими контактными площадками

Описание функционирования микросхемы

CAN передатчик

CAN передатчик имеет три режима работы: нормальный режим, режим контроля скорости нарастания/спада выходного сигнала и режим «выключено». Таблица истинности работы передатчика микросхемы приведена в таблицах 10, 11.

В нормальном режиме работы выходы передатчика переключаются с максимальной возможной скоростью для обеспечения скорости передачи данных до 1 Мбит/с.

Для выбора режима «контроля скорости» необходимо подключить резистор между входом R_{RS} и потенциалом земли. В этом режиме номинал резистора определяет величину скорости нарастания/спада выходного сигнала, что необходимо для уменьшения уровня электромагнитных помех, а также отражений при неидеально согласованной шине. Таким образом обеспечивается стабильная передача информации со скоростью от 40 до 500 Кбит/с.

Величину подключаемого резистора можно рассчитать по формуле:

R_{RS} [кОм] = 12000 / Скорость передачи [Кбит/с]

Зависимость скорости передачи данных от сопротивления приведена в таблице 9. Неподключенный вход R_{RS} задает режим «ожидание». Подключенный между входом и землей резистор R_{RS} задает режим «контроль скорости».

Таблица 2 - Зависимость скорости передачи данных от сопротивления

R _{RS} , кОм	Скорость передачи, Кбит/с
24	500
47	250
100	125
180	62,5

Выходы передатчика имеют защиту от короткого замыкания на потенциалы до ±40В. При этом в схеме передатчика реализовано 2 механизма: ограничение выходного тока и защита от перегрева. Схема защиты от перегрева срабатывает при температуре кристалла около 155°С и переводит схему передатчика в состояние «выключено». Гистерезис порога включения порядка 15°С.

Вход TXD имеет внутреннею подтяжку. В отсутствии подключения входа TXD схема передатчика находится в рецессивном состоянии.

Таблица 3 - Таблица истинности работы приемопередатчика CAN

TXD	RS	SHDN	/SHDN	CANH	CANL	Состояние линии передачи	RXD
0	U _{RS} <0,75•U _{CC}	0 или F	1 или F	Высокий уровень	Низкий уровень	Доминантное	0
1 или F	U _{RS} <0,75∙U _{CC}	0 или F	1 или F	525кОм к 0,5U _{CC}	525кОм к 0,5∙U _{CC}	Рецессивное	1
X	U _{RS} >0,75∙U _{CC} или F	0 или F	1 или F	525кОм	525кОм	Доминантное	0
	или F	O VIJIVI I	ו אונוא ו	κ 0,5∙U _{CC}	к 0,5∙U _{CC}	Рецессивное	1
Х	Х	1	0	Высокий импеданс	Высокий импеданс	Х	1

Примечание: Х - состояние вывода не имеет значения;

F - вывод не подключен; 0 - низкий логический уровень; 1 - высокий логический уровень.

Таблица 4 - Таблица истинности работы передатчика CAN

Состояние входа RS	Режим работы
U _{RS} <0,3∙U _{CC}	Нормальный режим
0,4•U _{CC} <u<sub>RS<0,6•U_{CC}, R_{RS}=24180кОм</u<sub>	Режим «контроль скорости»
U _{RS} >0,75∙U _{CC} или неподключен	Режим «ожидание»

CAN приемник

Выход приемника активен во всех режимах работы схемы. Выходной высокий уровень соответствует рецессивному состоянию на линии передачи, а также режиму «выключено», выходной низкий уровень соответствует доминантному состоянию на линии передачи. Дифференциальный порог переключения приемника около 0,7 В и имеет гистерезис порядка 80 мВ. Допустимый диапазон синфазных напряжений для приемника составляет от минус 10 В до 10 В.

Приемник рассчитан на прием данных со скоростью до 1 Мбит/с. Приемник имеет входной фильтр, что повышает стойкость приемника к дифференциальным помехам.

Режим "ожидание"

В режиме «ожидание» приемопередатчик переходит в режим с пониженным энергопотреблением. В этом режиме передатчик полностью выключается, а приемник остается активным и снижается его потребление. По этой причине в режиме «ожидание» приемник работает медленнее чем в нормальном режиме и может пропустить первое сообщение (при высоких скоростях передачи). При появлении доминантного состояния на линии передачи приемник выдает низкий логический уровень на выходе RXD сигнализируя микроконтроллеру о необходимости переключения приемопередатчика в нормальный режим (по входу RS).

Режим "выключено" для микросхем 5559ИН14Б, 5559ИН14В

При появлении на входе SHDN или nSHDN активного логического уровня приемопередатчик переходит в режим "выключено", с током потребления не превышающим 30 мкА. В этом режиме схема приемопередатчика полностью выключается и не оказывает влияния на линию передачи. Выход RXD переходит в состояние с высоким логическим уровнем. Вход SHDN или nSHDN имеет внутреннею подтяжку к пассивному логическому уровню. В отсутствии подключения входа SHDN или nSHDN схема приемопередатчика находится в одном из рабочих режимов.

Типовая схема включения микросхемы

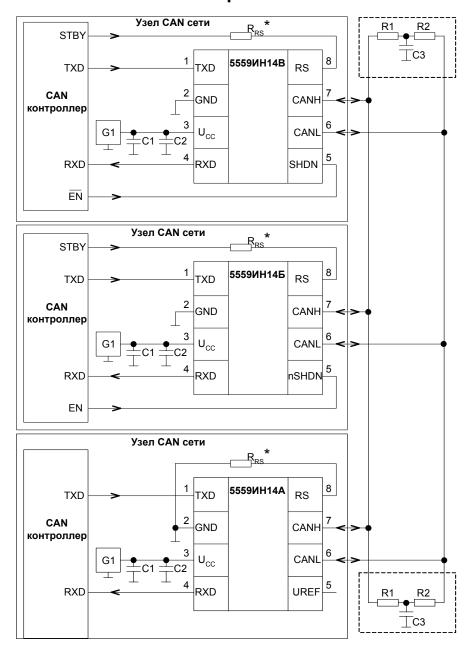


Рисунок 2 Типовая схема включения микросхемы

5559ИН14А (Б,В) - включаемая микросхема;

G1 - источник постоянного напряжения, U_{CC} = (4,5...5,5) В;

C1...C4 - конденсаторы, C1= 47 мк Φ ± 10 %;

C2= 100 $H\Phi \pm 10$ %; C3= 10 $H\Phi \pm 10$ %;

R1...R4, R_{RS} - резисторы, R1=R2=60 Ом. $R_{RS}^*=24...180$ кОм

Неиспользуемый логический вывод 8 рекомендуется подключить к GND. Неиспользуемый логический вывод 5 5559ИН14Б рекомендуется подключить SND.

Неиспользуемый логический вывод 5 5559ИН14В рекомендуется подключить к U_{CC}.

^{* -} место включения резистора для управления временем нарастания/спада выходного сигнала передатчика.

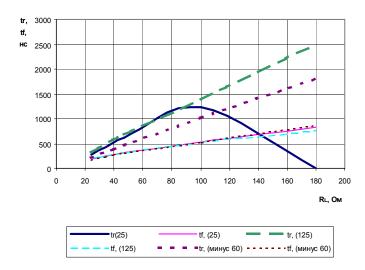
Предельно допустимые характеристики микросхемы

Таблица 5

			Преде	ельно-	Преде	льный		
N	Наименование	Обозначе	допустимый режим		режим		Ед-цы	
п/п	параметра	ние	•		не не		измер	
	pae.pa.	параметра	не менее	не более	менее	более		
4	Напряжение источника		4.5		минус			
1	питания	U _{CC}	4,5	5,5	0,3	6,0	В	
	Входное напряжение							
	высокого уровня							
2	на выводах:	U _{IH}	2,0	U_CC		U _{CC} +0,3	В	
_	ТХD 5559ИН14A	OIH	2,0	OCC	_	00010,5	Ъ	
	TXD, SHDN 5559ИН14Б							
	TXD,/SHDN 5559ИН14B							
	Входное напряжение							
	низкого уровня				_			
3	на выводах: TXD 5559ИН14A	U_IL	0	0,8	минус	-	В	
	TXD 5559ИН14A TXD, SHDN 5559ИН14Б			·	0,3			
	TXD,/SHDN 5559ИH14B							
	Входное напряжение				минус			
4	нормального режима	U_{I_RS}	0,0	0,3∙U _{CC}	0,3	-	В	
5	Входное напряжение	1.1	0.75.11	11		11 100	Б	
5	режима ожидания	U_{I_STBY}	0,75•U _{CC}	Ucc	ı	U _{CC} +0,3	В	
	Дифференциальное							
	пороговое напряжение			0,9	-	-		
6	приемника	U_TH	0,5				В	
	при: минус 10В≤							
	(U _{O CANH} ,U _{O CANL}) ≤ 10B							
	Дифференциальное							
	пороговое напряжение							
7	приемника	U _{TH_STBY}	0,5	0,9	-	-	В	
	при: минус 10В≤		,,,,	-,-				
	$(U_{O_CANH}, U_{O_CANL}) \le 10B,$ $U_{RS} = U_{CC},$							
_	Входное напряжение	U _{CANH}	минус	4.6.5	минус	4.5		
8	по выводам CANH, CANL	U _{CANL}	10,0	18,0	40	40	В	
9	Входное синфазное		минус	10.0			Р	
9	напряжение приемника	U _{CM}	10,0	10,0		-	В	
	Скорость обмена							
10	информации	f_{DR}	1000	-	-	-	кбит/с	
	при: U _{RS} = 0B							
11	Сопротивление нагрузки	R_L	45	-	-	_	Ом	
	1	_						
12	Емкость нагрузки	C_L	-	100	-	-	пΦ	
						l		

Стойкость к воздействию статического электричества 2 кВ.

Электрические параметры микросхемы


Таблица 6

	·	T	Таблица 6			
Nº	Наименование параметра	Обозначение			араметра	-1 1
п/п	. Idrinio i obdinio i idpanio i pa	параметра	измерения	Мин.	Макс.	измер
	5559ИН14А, 5559ИН14Б,	5559ИН14В				
1.	Выходное напряжение высокого уровня приемника	U _{OH_RXD}	I _O = минус 1 мА	0,8•U _{CC}	U _{CC}	В
2.	Выходное напряжение низкого уровня приемника	U _{OL_RXD}	I _O = 1 мА	0	0,2∙U _{CC}	В
3.	Входное напряжение "режима контроля скорости нарастания/спада выходного дифференциального напряжения передатчика"	U _{I_SLOPE}	R _{RS} = 24180 кОм	0,4∙U _{CC}	0,6∙U _{CC}	В
4.	Выходное напряжение передатчика, рецессивное состояние, без нагрузки	U _{O_CANH_REC} U _{O_CANL_REC}		2,0	3,0	В
5.	Выходное напряжение передатчика, доминантное состояние, выход CANH	U _{O_CANH_DOM}		2,75	4,5	В
6.	Выходное напряжение передатчика, доминантное состояние, выход CANL	U _{O_CANL_DOM}		0,5	2,25	В
7.	Выходное дифференциальное напряжение передатчика, доминантное состояние,	U _{O_DIFF_DOM}	R_L = 45 OM, U_{CC} = 5,0±10%B R_L = 60 OM, U_{CC} = 5,0±10%B	1,5	3,0	В
8.	Выходное дифференциальное напряжение передатчика, рецессивное состояние, без нагрузки	U _{O_DIFF_REC}		минус 500,0	50,0	мВ
9.	Ток потребления, доминантное состояние	I _{CC_DOM}	U _{TXD} =0 B, U _{RS} =0 B	-	60,0	мА
10.	Ток потребления, рецессивное состояние	I _{CC_REC}	U _{TXD} =U _{CC} , U _{RS} =0 B	-	15,0	
11.	Ток потребления, режим ожидания, мА	I _{CC_STBY}	U _{RS} =U _{CC}	-	1,0	
12.	Входной ток высокого уровня передатчика	I _{IH_TXD}		минус 10,0	10,0	мкА
	Входной ток низкого уровня передатчика	I _{IL_TXD}		минус 150,0	10,0	мкА
14.	Ток короткого замыкания выхода приемника	I _{OS_RXD}	0 B< U ₀ < U _{CC}	минус 35,0	35,0	мА
15.	Входной ток нормального состояния	I _{I_RS}	U _{RS} = 0 B	минус 500,0	минус 100,0	мкА
16.	Входной ток состояния ожидания	I _{I_STBY}	$U_{RS} = U_{CC}$	минус 10,0	10,0	мкА

Nº	Наименование параметра	Обозначение	Условия		араметра	Ед-цы
п/п	Паименование параметра	параметра	измерения	Мин.	Макс.	измер
17.	Ток утечки выхода передатчика, рецессивное состояние, без нагрузки	I _{L_CANH_REC} I _{L_CANL_REC}	минус $40 \text{ B} \le$ (U_{O_CANH}, U_{O_CANL}) $\le 40 \text{ B},$ $0 < U_{CC} < 5,5 \text{ B}$	минус 5,0	5,0	мА
18.	Ток короткого замыкания выхода передатчика, доминантное состояние	I _{OS_CANH}	U _{O_CANH} = минус 10В	минус 250,0	минус 50,0	мА
19.	Ток короткого замыкания выхода передатчика, доминантное состояние	I _{OS_CANL}	U _{O_CANL} =18 B	50,0	250,0	мА
20.	Время задержки распространения передатчика при переходе из рецессивного в доминантное состояние	t _{PHL_TXD}		-	90,0	нс
21.	Время задержки распространения передатчика при переходе из доминантного в рецессивное состояние	t _{PLH_TXD}		-	150,0	нс
22.	Время задержки распространения передатчик-приемник при переходе из рецессивного в доминантное состояние	t _{PHL_RXD}		-	160,0	нс
23.	Время задержки распространения передатчик-приемник при переходе из доминантного в рецессивное состояние,	t _{PLH_RXD}		-	200,0	нс
24.	Время задержки распространения приемника при «выключении»	t _{PHL_WAKE}	U _{RS} =U _{CC}	-	500,0	нс
25.	Время задержки включения при переходе из режима «ожидание» в нормальный режим доминантное состояние	t _{ON_STBY}		-	4,0	МКС
26.	Время нарастания дифференциального выходного напряжения передатчика,	t _r		15	80	нс
27.	Время спада дифференциального выходного напряжения передатчика,	t _f		15	80	нс
28.	Входное сопротивление приемника	R _I		5,0	25,0	кОм

Nº	<u> 9ИН14ВУ, КЭЭЭ9ИН14ВУ</u>	Обозначение	Условия	Норма по	naMatna	Fn_III
Π/Π	Наименование параметра	оозначение параметра	измерения измерения	порма па Мин.	араметра Макс.	⊏д-цы измер
29.	Входное дифференциальное сопротивление приемника	R _{I_DIFF}		10,0	100,0	кОм
30.	Соответствие входных сопротивлений приемника	ΔR_{I}		минус 3,0	3,0	%
31.	Входная емкость приемника	Cı		-	20	пФ
32.	Входная дифференциальная емкость приемника	C _{I_DIFF}		-	10	пФ
33.	Температура срабатывания защиты	T _{THP}		15	55	°C
34.	Температура отпускания защиты	T_THN		14	40	°C
35.	Гистерезис температур срабатывания/отпускания	ΔT_TH		1	5	°C
36.	Гистерезис дифференциального порогового напряжения приемника	ΔU_TH		80,0		мВ
	5559ИН14А					
37.	Опорное напряжение в нормальном режиме	U_REF	минус 50 мкА< I ₀ < 50 мкА	0,45•U _{CC}	0,55•U _{CC}	В
38.	Опорное напряжение в режиме ожидания	U _{REF_STBY}	минус 5 мкА< I _O < 5мкА		0,6•U _{CC}	В
	5559ИН14Б		J			I
39.	Ток потребления, режим «выключено»	I _{CC_SHDN}	U _{SHDN} =U _{CC} или U _{NSHDN} =0 B	-	10,0	мкА
40.	Входной ток высокого уровня вход SHDN	I _{IH_SHDN}	Hensit	10,0	150,0	мкА
41.	Входной ток низкого уровня вход SHDN	I _{IL_SHDN}		минус 10,0	10,0	мкА
42.	Время задержки включения при переходе из режима «выключено» в нормальный режим доминантное состояние	t _{ON_SHDN}		-	4,0	мкс
	5559ИН14В					
43.	Ток потребления, режим «выключено»	I _{CC_SHDN}	U _{SHDN} =U _{CC} или U _{NSHDN} =0 B	-	30,0	мкА
44.	Входной ток высокого уровня вход nSHDN	I _{IH_nSHDN}	HOHER 7 -	минус 10,0	10,0	мкА
45.	Входной ток низкого уровня вход nSHDN	I _{IL_nSHDN}		минус 20,0	10,0	мкА
46.	Время задержки включения при переходе из режима «выключено» в нормальный режим доминантное состояние	t _{ON_SHDN}		-	4,0	МКС

Типовые зависимости

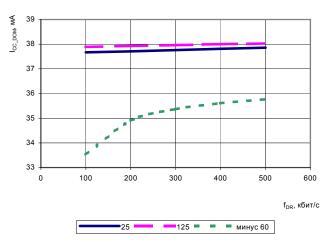
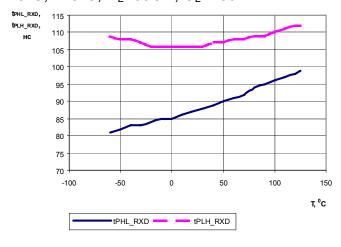
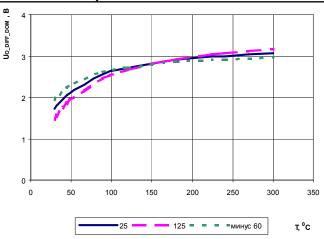


Рисунок 3 Зависимость скорости нарастания/ спада выходного дифференциального сигнала от сопротивления нагрузки, при: T= минус 60°C, 25°C, 125°C

70 t_{PHL TXD}, t_{PHL_TXD} , 60 нС 50 40 30 20 10 0 -100 50 -50 0 100 150 tPHL TXD tPLH TXD

Рисунок 4 Зависимость тока потребления в доминантном состоянии от скорости передачи данных, при: T= минус 60° C, 25° C, 125° C, $R_L=600$ M, $C_L=100$ ПФ

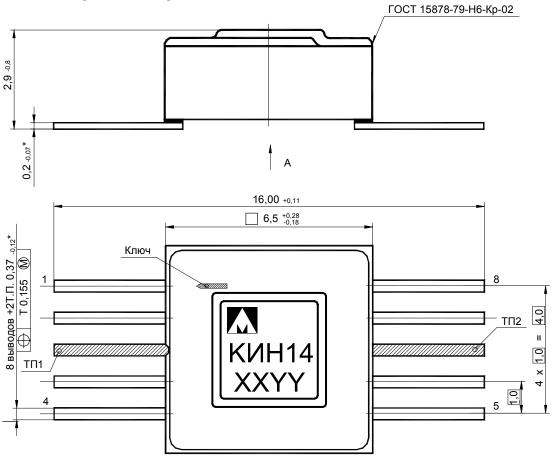

Рисунок 5 Зависимость времени задержки распространения передатчика при переходе из рецессивного в доминантное состояние и времени задержки распространения передатчика при переходе из доминантного в рецессивное состояние от температуры

Рисунок 6 Зависимость времени задержки распространения передатчик-приемник при переходе из рецессивного в доминантное состояние и времени задержки распространения передатчик-приемник при переходе из доминантного в рецессивное состояние от температуры

Рисунок 7 Зависимость выходного дифференциального напряжения передатчика, доминантное состояние от сопротивления нагрузки.

Габаритный чертеж микросхемы

Рисунок 8 Корпус H02.8-1B

<u>Примечания</u>. Ключ обозначен на обратной стороне корпуса.

ТП1, ТП2 технологические перемычки.

Информация для заказа

Обозначение	Маркировка	Тип корпуса	Температурный диапазон
5559ИН14АУ	ИН14А	H02.8-1B	минус 60…125 °C
К5559ИН14АУ	КИН14А	H02.8-1B	минус 60125 °C
К5559ИН14ГУ	КИН14А [•]	H02.8-1B	070 °C
5559ИН14БУ	ИН14Б	H02.8-1B	минус 60…125 °C
К5559ИН14БУ	КИН14Б	H02.8-1B	минус 60…125 °C
К5559ИН14ДУ	КИН14Б [•]	H02.8-1B	070 °C
5559ИН14ВУ	ИН14В	H02.8-1B	минус 60…125 °C
К5559ИН14ВУ	КИН14В	H02.8-1B	минус 60…125 °C
К5559ИН14ЕУ	КИН14В [•]	H02.8-1B	070 °C

Микросхемы с приемкой «ВП» дополнительно маркируются ромбом.

Микросхемы, название которых содержит в начале букву «К» имеют приемку «ОТК».